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A new image encryption algorithm based on spatiotemporal chaotic system is proposed,
in which the circular S-box and the key stream buffer are introduced to increase the
security. This algorithm is comprised of a substitution process and a diffusion process. In
the substitution process, the S-box is considered as a circular sequence with a head
pointer, and each image pixel is replaced with an element of S-box according to both the
pixel value and the head pointer, while the head pointer varies with the previous
substituted pixel. In the diffusion process, the key stream buffer is used to cache the
random numbers generated by the chaotic system, and each image pixel is then
enciphered by incorporating the previous cipher pixel and a random number dependently
chosen from the key stream buffer. A series of experiments and security analysis results
demonstrate that this new encryption algorithm is highly secure and more efficient for
most of the real image encryption practices.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Digital images have some well-known intrinsic proper-
ties such as bulk data capacity, high redundancy, strong
correlation among adjacent pixels [1]. Due to these fea-
tures, traditional text encryption schemes are no longer
suitable for image encryptions [2]. Along with the rapid
growth of requests for image transmission through open
networks, the security of digital image has become an
imperative issue [3], and attracted much attention of
researchers. Various encryption schemes [4–7] have been
developed based on different techniques which are sum-
marized in a comprehensive review in [8]. Among the
existing state-of-the-art approaches, chaos-based methods
are extensively investigated and a large number of chaos-
x: þ86 2982668971.
o).
based encryption algorithms have been proposed [9–13].
This is because chaotic systems have good features of
aperiodicity, pseudorandomness, and high sensitivity to
initial conditions.

In chaos-based encryption schemes, chaotic maps are
generally used as one time pad for encrypting messages.
Since image encryption schemes based on low dimen-
sional chaotic map have low computational complexity,
they can be analyzed with low computational cost using
iteration and correlation functions [14]. Recently, many
researchers adopted the high dimensional chaotic maps to
improve chaos-based cryptosystems with enlarged key
space and long periodicity of chaotic system [15–18].
Nevertheless, some cryptosystems based on high dimen-
sional chaotic maps or spatiotemporal chaotic maps are
still not acceptably secure [19–22], where one main reason
is that the key stream generated is independent from the
plain image and the cipher image [23]. To overcome this
weakness, a key stream buffer is introduced in [24] to
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Fig. 1. Architecture of the proposed cryptosystem.
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cache the random numbers generated by the chaotic
system, which makes the generated key stream related
to the images.

A chaos-based image encryption scheme basically
comprises iterations of the confusion and the diffusion
[25]. In each iteration, Substitution box (S-box), Permu-
tation box (P-box) or other nonlinear operations are
utilized to provide confusion and diffusion. S-box is a
type of basic nonlinear components for symmetric key
algorithms. Benefiting from its properties, e.g. nonlinear-
ity, differential uniformity and strict avalanche criterion,
S-box has been widely used in new encryption strategies.
Many researchers have shown attention to utilizing
chaotic nonlinear properties to design S-boxes. Lots of
S-box construction algorithms [26–29] have been pro-
posed using different chaotic systems. Furthermore,
S-box applications in image ciphers become more popu-
lar where S-box is progressively considered as a main
function for performing substitution. However, it is found
that some S-box-only ciphers are vulnerable to chosen
plaintext attacks. Zhang and Xiao [30] carefully studied
the security issues for the general S-box-only image
ciphers and presented a successful cryptanalysis. In order
to obtain the secure cipher images, some S-box-based
image encryption algorithms either use the dynamic
S-boxes [31,32] or incorporate the S-box with other
encryption methods [33,34]. For example, in [31], a block
cipher with dynamic S-boxes is studied, in which a tent
map is chosen to generate S-box that is required in the
confusion phase, and then a left-cyclic-shift operation is
used for diffusion step. Wang and Wang [32] also pro-
posed a chaotic image encryption algorithm based on
dynamic S-boxes, where the image pixels are divided into
several groups and each group uses a new S-box gener-
ated separately, according to the plain image. In [33,34],
image encryption algorithms are proposed by combining
S-box transformation with permutation-diffusion scheme,
where S-boxes are used for substituting pixels to provide
extra confusion.

In this paper we propose a novel secure image encryp-
tion scheme based on spatiotemporal chaotic system. The
chaotic system constituted by the logistic map and the
piecewise linear chaotic map (PWLCM) is adopted to
produce random numbers. The proposed scheme consists
of a substitution process and a diffusion process. In the
substitution process, the S-box is considered as a circular
sequence with a head pointer to the start position. For
each image pixel, it is replaced with an element of S-box,
according to both the pixel value and the head pointer to
obtain a cipher pixel. Then the head pointer is reset
following the cipher pixel. By this way, each image pixel
can be substituted using a different S-box. During the
diffusion process, the key stream buffer is used to cache
the random numbers generated by the chaotic system. For
enciphering an image pixel, a random number is chosen
dependently to the previous cipher pixel. Thus, the key
stream used in diffusion process is highly dependent on
the image. Experimental results on various types of secur-
ity analysis indicate that the proposed scheme is robust
against various common attacks and performs higher
encryption speed.
The rest of this paper is organized as follows: Section 2
describes our new image encryption scheme in detail.
Section 3 shows results of experiments which demonstrate
the performance by various security analysis. We compare
our scheme with some existing chaos-based encryption
schemes in Section 4, and the conclusion of this paper is
given in Section 5.

2. The proposed cryptosystem

The architecture of the proposed scheme is shown in
Fig. 1. The pipeline of our scheme is as follows: initially,
the external secret key and the size of plain image are
utilized to produce the initial states and parameters of the
chaotic system. The pseudo-random number generator
iterates the chaotic system with the initial states and
generates the random numbers for image encryption.
Then, the encryption process which consists of substitu-
tion and diffusion enciphers each pixel of the image using
these random numbers.

2.1. Pseudo-random number generator

The pseudo-random number in encryption process is
produced by a spatiotemporal chaotic system. This system
is modeled by the Coupled Map Lattice (CML). A CML is an
array of states whose values are continuous (usually
within the unit interval) or discrete space and time. The
CML model adopted in this paper is a two-dimensional
dynamical map, which can be described as following [35]:

xiþ1 ¼ ð1�βÞf 1ðxiÞþβf 2ðyiÞ
yiþ1 ¼ ð1�βÞf 1ðyiÞþβf 2ðxiÞ

(
ð1Þ

where the parameter β controls the strength of the
coupling, while the functions f1 and f2 are the chaotic
maps. Let f1 be the logistic map and f2 be the piece-wise
linear chaotic map (PWLCM), which are represented as
follows, separately:

f 1ðxÞ ¼ αxð1�xÞ ð2Þ

f 2ðxÞ ¼
x=γ; 0rxoγ
ðx�γÞ=ð0:5�γÞ; γrxo0:5
f 2ð1�xÞ; 0:5rxo1

8><
>: ð3Þ

where xA ½0;1� is the state variable, both αA ð0;4� and
γAð0;0:5Þ are control parameters.

The initial conditions of the above chaotic system
include initial state denoted by (x0, y0) and three parameter
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α, β and γ. Note that, there are two two-tuples of initial
states, denoted by (sx0, sy0) and (dx0, dy0) corresponding to
the substitution process and the diffusion process, respec-
tively. The initial conditions are computed based on a 280-
bit-long external secret key and the size of plain image.

First, the external secret key is divided into 40-bit-long
blocks ki (i¼ 1;2;…;7). Each ki is considered as an integer
number. Using Eq. (4), we can calculate an integer number
k which depends on each bit of external key

k¼ �7
i ¼ 1

cycLðki;5iÞ ð4Þ

where � denotes bitwise XOR operation and cycLðx; yÞ
denotes a left cyclic shift of x by y bits.

Then, each ki (i¼ 1;2;…;7) is modified by

ki ¼ ki � k ð5Þ

Since each ki is 40-bit-long, its value is in the range
from 0 to 240. So we can convert ki into a real number
RiAð0;1Þ using the following equation:

Ri ¼ ðkiþnÞ=ð240þnÞ ð6Þ

where n ðn40Þ is the size of the plain image. Now, the
initial states and parameters of the chaotic system can be
generated as follows:

sx0 ¼ R1; sy0 ¼ R2; dx0 ¼ R3; dy0 ¼ R4;

α¼ 3:99þ0:01R5; β¼ R6; γ ¼ 0:5R7

From the above process, we can find that the generated
initial states and parameters satisfy the constraints of the
CML described by Eqs. (1)–(3), and are relevant to the
image size and each bit of external key, so the key
sensitivity is enhanced.

Given two initial states x0 and y0 to the CML, a series of
new states x and y can be generated by iterating the CML.
The values of the CML states are floating-point numbers,
but the pseudo-numbers are usually required in the form
of an integer in encryption. Thus, a conversion process
from floating-points to integers is necessary. Although
couples of complex methods can convert a floating-point
number into an integer, e.g. in [36,37], we prefer the
simple ones. Complicating the approach at this step is
not smart; actually, the simple method we use is effective
enough but is more efficient. Thus, first iterate the CML
once to obtain the new state values x and y, then generate
4 numbers d1,d2,d3,d4 using the following formula:

d1 ¼ floorð232 � xÞ mod 256
d2 ¼ floorð232 � yÞ mod 256
d3 ¼ floorð224 � xÞ mod 256
d4 ¼ floorð224 � yÞ mod 256

8>>>><
>>>>:

ð7Þ

where function floor(x) returns the nearest integer less
than or equal to x, mod is the modular operator. These 4
numbers are supplied to the encryption process one after
another when needed. After these numbers are used, the
CML iterates again to generate another 4 new random
numbers.
2.2. Substitution process

Substitution is a nonlinear transformation which per-
forms confusion on the input image pixels. A nonlinear
transformation is essential for any modern encryption
algorithms and is proved to be a strong cryptographic
primitive against linear or differential cryptanalysis. Sub-
stitution can be implemented as the form of a lookup
table, which is also called S-box in many literatures. In our
scheme's substitution process, the S-box is first con-
structed using the generated random numbers, and then
the value of each plain image pixel is replaced with
another by the S-box transformation.

2.2.1. Construction of S-box
Mathematically, an M�N S-box is a nonlinear mapping

from VM to VN, where VM and VN represent the vector
spaces of the elements in the M and N tuples from GFð2Þ,
respectively. Several methods are designed for construct-
ing cryptographically strong S-boxes. In our proposed
image encryption scheme, we use 8�8 S-box and present
a simple but fast method to construct the S-box. The
outline of our method is described as follows:
(1)
 Set initial states of the chaotic system to (sx0, sy0).
Iterate the chaotic system for CL times to get rid of the
transient effect, where CL is a constant.
(2)
 Assume that S¼ fS½0�; S½1�;…; S½255�g is the S-box that
needs to be generated, Q ¼ fQ ½0�;Q ½1�;…;Q ½255�g is a
sequence of integers and each Q ½k� is initialized to k.
(3)
 Set i¼0.

(4)
 Generate a random number d and calculate an index j

of the sequence Q.

j¼ d modð256� iÞ
(5)
 Let S½i� ¼ Q ½j�, Q ½j� ¼Q ½255� i�, and i¼ iþ1.

(6)
 Repeat steps (4) and (5) until i4255.
After this procedure, we obtain an S-box in the form of
a sequence S¼ fS½0�; S½1�;…; S½255�g, where each element
S½k�A ½0;255� is unique to others in S, so S is bijective. Fig. 2
shows an instance of an S-box generated by this method.

To evaluate the performance of the generated S-box,
the nonlinearity, strict avalanche criterion (SAC), output
bits independence criterion (BIC), differential approxima-
tion probability (DP) and linear approximation probability
(LP) are calculated and listed in Table 1, where column 2
shows the performance of the generated S-box shown in
Fig. 2, and column 3 shows the average performance of
500 S-boxes randomly generated by our method. From
Table 1, we can see that our method has nearly as good
performance as the schemes proposed in [27,28]. There-
fore, this method can be used to generate ideal S-box for
encryption.

2.2.2. Substitution based on the circular S-box
The plain image P with size n can be considered as a

sequence of pixels {p1,p2,…,pn} ordered from the left-most
pixel to the right-most pixel per line, and from the top line



Fig. 2. An S-box instance (in hexadecimal format).

Table 1
Performance of the generated S-box.

Performance
tests

S-box of
Fig. 2

Average of
500 S-boxes

Scheme in
Ref. [27]

Scheme in
Ref. [28]

Nonlinearity 108.00 113.10 104.88 108.00
SAC 0.5007 0.4965 0.4844 0.4922
BIC 112.00 109.36 103.82 103.36
DP 0.0468 0.0398 0.0391 0.0391
LP 0.1390 0.1439 0.1289 0.1406

Fig. 3. The circular S-box.
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to the bottom line. After an S-box is constructed, it can be
used to substitute for the image pixels. In order to break
down the correlations between adjacent pixels, ideally,
each pixel should be substituted using a different S-box.
However, this is extremely time-consuming and thus is
unrealistic to construct different S-boxes for every pixel. In
this paper, the S-box is considered to be a circular
sequence shown in Fig. 3, in which the first element in
the sequence is assumed to follow the last element. A head
pointer header is set to the start position of the circular
sequence, which is initialized to a constant or a random
generated number.

To encrypt the plain image, we replace each pixel pi
with an element in the S-box S according to both the
values of header and pi, and then obtain a cipher pixel.
After a pixel is enciphered, the head pointer header is set
to a new value by considering both the cipher pixel and a
random number. Suppose that p0i is the cipher pixel
corresponding to the original pixel pi, the substitution for
each pi is

p0i ¼ S½ðheaderþpiÞ mod 256�
header¼ p0i � m

(
ð8Þ

where m is a random number for masking the pixel.
In the decryption process, an inverse S-box S0 is derived

from S satisfying S0½S½k�� ¼ k. Then, each pi can be recovered
by the following formula:

pi ¼ ðS0½p0i�þ256�headerÞ mod 256
header¼ p0i � m :

(
ð9Þ

By introducing the circular S-box, the substitution for a
pixel depends on not only the pixel value itself, but the
previous cipher pixel as well. The aforementioned method
can achieve an ideal avalanche effect and makes the
substituted image have a high randomness. The perfor-
mance of this method will be carefully discussed and
demonstrated in Section 3 through different sets of experi-
ments and security analysis.

2.3. Diffusion process

The function of the diffusion process is to modify the
pixel value sequentially so that a small change in one pixel
can spread out to as many pixels as possible, hopefully can
affect the whole image. In order to enable the key stream
used in the diffusion process to have high dependence on
the image, in our scheme we use the key stream buffer,
which is proposed in [24], to cache the random numbers
generated by a pseudo-random number generator.

2.3.1. Key stream buffer
The key stream buffer is a pool of random numbers.

It provides a selection mechanism for the diffusion process
which chooses the random number based on the pixels.
The diffusion process takes advantage of two operations to
manipulate the key stream buffer. One operation is init(x0,
y0) which initializes the key stream buffer, while the other
one is Get(i) that selects the i-th random number from the
buffer.

The operation init(x0,y0) first builds up a storage space
(the buffer) with the size of BL to cache the generated
random numbers, where BL is a constant. Next, this
operation sets the initial states of the chaotic system to
(x0,y0) and iterates the system for constant CL times to get
rid of the transient effect. Then it performs pseudo-
random number generation to produce BL random num-
bers and stores them in the buffer.

The operation Get(i) takes the i-th random number out
of the buffer and returns it to diffusion process, then the
operator replaces the i-th random number in the buffer
with a new generated one.

In our encryption scheme, the selection of a random
number from the buffer is dependent on the previous
cipher-pixel which has the value from 0 to 255. In order to
easily and directly access the random numbers according
to the image pixels, we set the buffer size BL to 256.



Table 2
Performance of substitution with different group sizes.

Minimum group size Entropy Local entropy Correlation

256 7.98504 7.87066 0.00855
512 7.98449 7.84500 0.01391
1024 7.97761 7.72838 0.01989
2048 7.96381 7.61403 0.02429
4096 7.95497 7.58338 0.02846
8192 7.86332 7.14062 0.03850
16,384 7.76149 6.89267 0.04222
32,768 7.65251 6.74489 0.05365
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2.3.2. diffusion based on key stream buffer
The diffusion process is performed on the image that has

shuffled by substitution process. It changes each pixel value
from the first pixel to the last one. At the start point of the
diffusion process, the key stream buffer is initialized by the
operation init(dx0,dy0). During enciphering a pixel, a ran-
dom number is chosen from the key stream buffer accord-
ing to the previous pixel, and this chosen random number is
used to encipher the current pixel. Suppose that
P0 ¼ fp01;p02;…; p0ng is the image that needs to be diffused
and C ¼ fc1; c2;…; cng is the diffused image corresponding
to P0. The diffusion operation can be represented as follows:

ci ¼ ½ðp0i � ci�1ÞþGetðci�1Þ� mod 256; for i¼ 1;2;…;n

ð10Þ
where Get(k) denotes the function of selecting the k-th
random number from key stream buffer and c0 is a constant
or a random number. Similarly, we can deduce the inverse
diffusion operation as

p0i ¼ ½ðci�Getðci�1Þþ256Þ mod 256� � ci�1: ð11Þ
Based on the key stream buffer, the random number

used for enciphering a pixel depends on the previous
cipher-pixel. Because the elements in the buffer change
according to the previous cipher pixels, the sequence of
random numbers used in diffusion process is obviously
different from the one generated by the random number
generator, and thus varies for different images. Therefore,
in our method the key stream highly depends on the
image, and thus can achieve a potential avalanche effect.

2.4. Encryption and decryption algorithms

Our encryption approach consists of the substitution
process and the diffusion process. Initially, the initial states
and parameters of the chaotic system are generated by the
external secret key and plain image size. In the substitu-
tion process, to achieve higher security, the image pixels
are randomly divided into a set of groups Gi (i¼ 1;2;…; t)
with the length of li such that ∑t

i ¼ 1li ¼ n, liA ½L;2LÞ
ð1r iotÞ and lto2L, where L is a pre-set minimum group
length. For each group, a brand-new S-box is constructed
and performed.

In order to determine the value of L, we choose several
images for test, where each image has the identical pixels.
For different value of L, these test images are substituted
using Eq. (8), then the average information entropy, local
Shannon entropy [38] and correlation between adjacent
pixels are carried out to evaluate the performance of
substitution. The test results are shown in Table 2. We
can find that the smaller the value of L is, the better
performance of substitution will be achieved, and when
Lr4096, the substitution can obtain an acceptable secur-
ity. However, the substitution process employing smaller
groups requires more S-boxes to be generated. Taking into
account the substitution speed, we set L to 4096. Thus, our
encryption algorithm can be summarized as follows:
(1)
 Generate the initial states and parameters for the chaotic
system, which includes sx0, sy0, dx0, dy0, α, β and γ.
(2)
 Let i¼n and the chaotic system states (x, y) be
(sx0, sy0).
(3)
 Construct an S-box S as described in Section 2.2, and
set header and m to the random numbers produced by
pseudo-random number generator.
(4)
 Generate two new random numbers r1 and r2, and
calculate the length l of the group as

l¼ Lþðr1þ256r2Þ mod L if iZ2L
i if io2L

:

(

(5)
 Successively substitute the pixels pi; pi�1;…; pi� lþ1
using Eq. (8) to obtain the substituted pixels p0i;
p0i�1;…; p0i� lþ1.
(6)
 Let i¼ i� l, z¼ p0i � p0i�1 � ⋯ � p0i� lþ1. Update the
states (x, y) of the chaotic system by Eq. (12) to make
the chaotic state related to the cipher pixels.

x¼ ð1�εÞxþεz
y¼ ð1�εÞyþεz

(
ð12Þ

where εAð0;1Þ is the factor to perturb the chaotic
system. Because chaotic system has the property of
high sensitivity to initial conditions, any change in the
chaotic state will alter the trajectory of the chaotic
system. So we arbitrarily set ε¼ 0:3 in this paper.
(7)
 Repeat steps (3)–(6) until ir0.

(8)
 Initialize the key stream buffer through the operation

init(dx0, dy0), and perform diffusion as represented by
Eq. (10) on the substituted image P0, thus obtain the
cipher image C.
In the above algorithm, step (1) generates the initial
conditions of the chaotic system, steps (2)–(7) perform
substitution on the plain image P to compute a substituted
image P0, and finally step (8) performs diffusion operations
on the substituted image P0 to obtain the cipher image C.
The decryption algorithm is similar to the encryption
algorithm; however, the only difference is that the inverse
diffusion described by Eq. (11) should be performed first,
then the inverse substitution represented by Eq. (9) can
follow.

3. Experiments and security analysis

An effective encryption algorithm should be robust
against all kinds of known attacks. In order to measure
the performance of the proposed scheme, we choose six



Fig. 4. Test images: (a) Cameraman (256�256), (b) Peppers (4096�4096), (c) Lena (512�512), (d) White (640�480), (e) Flower (1024�768) and
(f) Black (1600�900).

Fig. 5. The plain and cipher images. (a) Plain, (b) substituted, (c) encrypted and (d) decrypted.

Table 3
Randomness tests of substituted image and encrypted image.

Tests Substituted image Encrypted image

Pass rate Result Pass rate Result

Frequency 0.9850 Success 1.0000 Success
Block frequency 1.0000 Success 1.0000 Success
Cumulative sums 0.9800 Success 1.0000 Success
Runs 0.9900 Success 1.0000 Success
Longest run 0.9899 Success 0.9899 Success
Rank 1.0000 Success 1.0000 Success
FFT 0.9899 Success 0.9900 Success
Non-overlapping 0.9887 Success 0.9893 Success
Overlapping 0.9900 Success 0.9899 Success
Universal 0.9825 Success 1.0000 Success
Approximate entropy 0.9999 Success 0.9898 Success
Random excursions 0.9883 Success 0.9945 Success
Random E-variant 0.9939 Success 0.9931 Success
Serial 0.9798 Success 0.9949 Success
Linear complexity 0.9900 Success 0.9899 Success
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sample images with 256 gray level, shown in Fig. 4, where
Fig. 4(d) is the white image with the same pixel value 255
and Fig. 4(f) is the black image with the same pixel value 0.
These images are then encrypted by the proposed
approach. Various analysis, including statistical analysis,
differential attack analysis and key security analysis are
carried out to demonstrate the performance and the
robustness of our image encryption scheme.

3.1. Encryption effect

In the experiment, we apply our scheme to the sample
images. The external secret key is “abcdefghijklmnopqr-
stuvwxyz123456789”. Fig. 5 shows the encryption and
decryption results of the image Cameraman with the size
of 256�256, where Fig. 5(b) is the enciphered image only
by substitution. From the figure, it is clear that the image
encrypted by our proposed approach is similar to a
random noisy image.

To evaluate the randomness of the encrypted images,
we encrypt the image Peppers with the size of 4096�4096
and apply NIST 800-22 [39] randomness test to the
encrypted images. The test results are given in Table 3.
From Table 3, we find that the encrypted image by
substitution process only can pass all the tests in NIST.
Comparing pass rates between substituted image and
encrypted image, we can see that the pass rates of
encrypted image are further improved by the diffusion
process.

3.2. Statistical analysis

It is known that an ideal encryption algorithm should
be robust against any statistical attack. To prove the
robustness of our new scheme, we apply several statistical
analysis on the encryption results. The results are collected
by calculating the histogram, the information entropy and
the correlations of two adjacent pixels in the cipher image.
According to the results, we will show that this novel
scheme has superior confusion and diffusion properties
which strongly resists the statistical attacks.

3.2.1. Histogram of cipher image
In order to resist the statistical attacks, the histogram of

the encrypted images should approximate to uniform
distribution. Fig. 6 shows the histograms of the plain and
the cipher images of Lena and White. We can see that the
histograms of the cipher images are almost uniformly
distributed. We use χ2 test to evaluate the uniformity of
the pixel-value distribution. The χ2 value of a image with



Fig. 6. Histograms: (a) image Lena, (b) histogram of plain Lena, (c) histogram of substituted Lena, (d) histogram of encrypted Lena, (e) image White,
(f) histogram of plain White, (g) histogram of substituted White and (h) histogram of encrypted White.

Table 4
χ2 statistics of the plain and the cipher images.

Image Plain Substituted Encrypted

Cameraman 110,973.3 259.789 223.633
Peppers 138,836.2 215.240 215.240
Lena 158,063.6 194.365 236.923
White 66,846,720 17,079.1 247.197
Flower 840,309.4 232.175 259.408
Black 33,423,360 69,374.4 229.238

Table 5
Entropies of the plain and the cipher images.
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256 gray levels is computed as

χ2 ¼ ∑
255

i ¼ 0

ðni�n=256Þ2
n=256

ð13Þ

where ni is the occurrence frequency of gray level i, n=256
is the expected occurrence frequency of each gray level.
The χ2 statistics for different images are listed in Table 4.
Using the significant level of 0.05, the corresponding
χ2ð0:05;255Þ is 293.25. All the χ2 statistics of cipher images
are less than χ2ð0:05;255Þ, which indicates that the histo-
gram distributions of cipher images are significantly
uniform.
Image Plain Substituted Encrypted

Cameraman 7.0097 7.9971 7.9975
Peppers 7.5715 7.9992 7.9994
Lena 7.4455 7.9995 7.9993
White 0.0000 7.9565 7.9993
Flower 7.1522 7.9998 7.9998
Black 0.0000 7.9229 7.9987
3.2.2. Information entropy analysis
The information entropy is defined to express the

degree of uncertainties or randomness in a given system.
The entropy H(m) of an m is calculated as

H mð Þ ¼ ∑
2N �1

i ¼ 0
p mið Þ log2

1
pðmiÞ

; ð14Þ

where 2N is the total number of symbols, miAm, and pðmiÞ
represents the probability of the symbol mi. For a random
image with 256 gray levels, the entropy should ideally be
H(m)¼8. Therefore, any effective encryption algorithm
should produce an encrypted image with the entropy close
to 8. Table 5 contains the entropies of each pair of the plain
image and its cipher image. From Table 5, the entropies of
all cipher images are very close to the theoretical optimal
value, which demonstrates that the cipher images are
almost close to a random source.

The local randomness of the encrypted image has also
been tested by using local Shannon entropy which was
proposed in [38]. The (k,TB)-local Shannon entropy is
defined as

Hk;TB
mð Þ ¼ ∑

k

i ¼ 1

HðSiÞ
k

ð15Þ

where S1; S2;…; Sk are non-overlapping and randomly
selected image blocks with TB pixels. In the experiment,
we choose k¼30 and TB¼1936, which are suggested in
[38]. Table 6 lists the test results and indicates that the
local Shannon entropy of each encrypted image is greater
than 7.90. So the image encrypted using our method has
the good local randomness.



Fig. 7. Images and their horizontal, vertical and diagonal correlations. (a) and (b
the encrypted images of Black.

Table 6
Local entropies of the plain and the cipher images.

Image Plain Substituted Encrypted

Cameraman 6.7729 7.8907 7.9103
Peppers 5.6494 7.9025 7.9152
Lena 6.8142 7.8865 7.9137
White 0.0000 7.8278 7.9065
Flower 4.2069 7.8964 7.9147
Black 0.0000 7.6289 7.9051
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3.2.3. Correlation analysis
We randomly select 1000 pairs of adjacent pixels from

the plain image and its cipher image in vertical, horizontal
and diagonal directions, respectively, and then plot out the
correlation between them. Fig. 7 shows the correlations
between pairs of the adjacent pixels in plain images Flower,
Black and their encrypted images as well. Fig. 7(b) and (d)
indicates that strong correlations between adjacent pixels
in the plain images are drastically reduced in the encrypted
images.
) The plain and the encrypted images of Flower. (c) and (d) The plain and



Table 7
Correlations of the plain and the encrypted images (HC – horizontal correlation, VC – vertical correlation, DC – diagonal correlation).

Image Pain image Substituted image Encrypted image

HC VC DC HC VC DC HC VC DC

Cameraman 0.93348 0.95922 0.91299 0.00356 �0.00411 0.00061 0.00292 �0.00120 �0.00045
Peppers 0.97917 0.98264 0.96892 �0.00165 �0.00449 0.00156 0.00140 �0.00153 �0.00067
Lena 0.97187 0.98498 0.96387 0.00152 �0.00417 �0.00186 0.00171 �0.00217 �0.00087
White 1.00000 1.00000 1.00000 �0.01988 0.02580 0.00102 �0.00011 0.00336 0.00055
Flower 0.99292 0.99397 0.98728 0.00153 �0.00009 �0.00051 0.00088 0.00203 0.00067
Black 1.00000 1.00000 1.00000 �0.01266 �0.01476 0.02196 �0.00189 0.00317 0.00175
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The correlation property can also be quantified by the
means of correlation coefficients:

r¼ covðx; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðxÞðDðyÞ

p ð16Þ

where

cov x; yð Þ ¼ 1
M

∑
M

i ¼ 1
xi�xð Þ yi�y

� �
;

D xð Þ ¼ 1
M

∑
M

i ¼ 1
ðxi�xÞ2;

where xi and yi are two adjacent pixels, M is the total
number of the adjacent pixel pairs (xi; yi), x and y denote
the mean values of x and y, separately. Table 7 collects the
correlation coefficients of the plain and the encrypted
images. From Table 7 it is obvious that all of the correlation
coefficients of encrypted images are close to zero, which
means our approach can effectively remove the correla-
tions among adjacent pixels in plain image.
3.3. Differential attack

In order to resist differential attack, a secure cryptosys-
tem should have high plaintext sensitivity, that is, the
output ciphertext of the cryptosystem should change
dramatically in response to any small change in plaintext.
In the proposed scheme, when a plain image pixel
changes, both the substitution process and diffusion pro-
cess will propagate this change to all its subsequent pixels.
Because the substitution process and diffusion process are
performed in opposite directions separately, any change of
a plain image pixel can be spread over the entire
encrypted image. To demonstrate the high plaintext sen-
sitivity of our scheme, we set 0 to the pixel located in
position (133, 461) in the image Lena to get a modified
image, and then encrypt the original image and modified
image using our method. The pixel-to-pixel differences
between two encrypted images can be obtained as shown
in Fig. 8. It can be seen that any slight change in the plain
image will cause the significant changes in the encrypted
image.

The plaintext sensitivity can be quantitatively evaluated
using the number of pixels change rate (NPCR) and unified
average changing intensity (UACI). Given two images
x¼ fx1; x2;…; xng and y¼ fy1; y2;…; yng, the NPCR and the
UACI are defined as

NPCR¼ 1
n

∑
n

i ¼ 1
D xi; yi
� �� 100% ð17Þ

UACI¼ 1
n

∑
n

i ¼ 1

∣xi�yi∣
255

� 100% ð18Þ

where Dðxi; yiÞ ¼ 0 if xi¼yi; otherwise, Dðxi; yiÞ ¼ 1.
In the experiment, the original plain image and its

modified image generated by randomly changing only one
pixel in original plain image are encrypted to obtain two
cipher images. These two cipher images are then used to
calculate the NPCR and UACI. For each sample image in
Fig. 4, this test is performed 1000 times, and the average,
maximum, minimum values of NPCR and UACI are given in
Table 8. As can be seen from Table 8, the NPCR and UACI of
encrypted images produced by our algorithm are close to
99.61 and 33.46, which are the average NPCR and UACI of
random images. This means that the proposed scheme can
effectively resist the differential attack.

3.4. Key security analysis

A good image encryption algorithm should be sensitive
to the secret keys, at the same time the key space should
be large enough to make any brute-force attacks infeasible.
To measure the key sensitivity of our approach, we
randomly choose two secret keys with the only one-bit
difference to encrypt the plain image, and then calculate
the NPCR and the UACI of the encrypted images. To obtain
powerful result, for each sample image, we repeat this test
1000 times, and collect the average, the maximum and
minimum values of NPCR and UACI, shown in Table 9. As a
result, NPCRs and UACIs of the encrypted images are close
to the mean values of those random images. Hence, the
proposed algorithm is highly sensitive to the changes of a
secret key.

In addition, the key space of the proposed scheme is
sufficient to resist all kinds of brute-force attacks. An
external 280-bit secret key is utilized to generate the
initial conditions of the chaotic system, thus the key space
is 2280 � 1:943� 1084, which satisfies the general require-
ment of resisting brute-force attacks.

4. Comparison with existing schemes

In this section, we compare our scheme with several
existing chaos-based schemes. We choose those newly



Table 8
Plaintext sensitivity of the proposed scheme.

Image Average Maximum Minimum

NPCR UACI NPCR UACI NPCR UACI

Cameraman 99.6059 33.4594 99.6643 33.7007 99.5499 33.3542
Peppers 99.6080 33.4713 99.6399 33.6005 99.5804 33.3750
Lena 99.6083 33.4554 99.6456 33.5787 99.5808 33.3518
White 99.6090 33.4551 99.6403 33.5606 99.5804 33.3666
Flower 99.6095 33.4601 99.6230 33.5045 99.5942 33.3754
Black 99.6067 33.4805 99.6437 33.6397 99.5430 33.3843

Fig. 8. The impact of a single pixel change in original image. (a) Original image, (b) modified image, (c) image differences between the original and
modified images, (d) encrypted image of (a), (e) encrypted image of (b) and (f) image differences between (d) and (e).
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proposed image encryption schemes, which were pro-
posed in [13,24,32–34]. In the comparison, we focus on
the statistical analysis, plaintext sensitivity and encryption
speed, which are also compared in the previous literatures.
The schemes proposed in [32–34] are based on S-box,
while the schemes in [13,24] claim to have faster speeds.

We encrypt the image Lena using different algorithms,
and calculate the histograms, the information entropies
and the correlation coefficients of two adjacent pixels in
the encrypted images. The comparison results are sum-
marized in Table 10. We can see that our scheme has the
competitive performance comparing with the other five
existing schemes.

In order to compare the plaintext sensitivities for the
different encryption methods, the image Lena and its
modified image generated by randomly changing a single
pixel in original plain image are encrypted for several
rounds using each algorithm. After each round of encryp-
tion, both NPCR and UACI of encrypted images are calcu-
lated and the averages of NPCR and UACI are listed in
Table 11. The test results support that the approach we
proposed has at least the same excellent performance as
the other algorithms in [13,24,32], while the algorithms in
[33,34] require additional multiple rounds of encryption to
achieve a desired effect.

The speed of the proposed scheme is also compared on
the same platform, which is the Microsoft VCþþ pro-
gramming on a personal computer with 3.10 GHz Intel(R)
Core(TM) i5-2400 CPU and 4 GB memory running on
Microsoft Windows 7. We run our scheme and the other
five algorithms for 100 times on 256 gray-scale images
with different sizes. The average encryption time for



Table 9
Key sensitivity of the proposed scheme.

Image Average Maximum Minimum

NPCR UACI NPCR UACI NPCR UACI

Cameraman 99.6131 33.4581 99.6689 33.6550 99.5529 33.3913
Peppers 99.6080 33.4713 99.6399 33.6005 99.5804 33.3750
Lena 99.6128 33.4594 99.6464 33.5442 99.5796 33.3759
White 99.6086 33.4572 99.6441 33.5259 99.5800 33.3591
Flower 99.6101 33.4591 99.6248 33.4980 99.5977 33.3895
Black 99.6087 33.4732 99.6460 33.6134 99.5689 33.3461

Table 10
Comparison on statistical analysis.

Encryption scheme Histogram (χ2) Entropy Local entropy Correlation

Horizontal Vertical Diagonal

Algorithm in [13] 392.63 7.9989 7.9089 0.0001 0.0031 �0.0043
Algorithm in [24] 288.47 7.9992 7.9070 0.0001 �0.0012 0.0012
Algorithm in [32] 391.10 7.9892 7.8706 0.0025 �0.0061 0.0002
Algorithm in [33] 233.72 7.9994 7.9025 0.0010 �0.0008 �0.0005
Algorithm in [34] 236.01 7.9993 7.9088 0.0003 �0.0047 0.0005
Proposed algorithm 236.92 7.9993 7.9137 0.0017 �0.0022 -0.0009

Table 11
Comparison on plaintext sensitivity.

Algorithm round¼1 round¼2 round¼3

NPCR UACI NPCR UACI NPCR UACI

Ref. [13] 99.5771 33.4936 99.5872 33.4634 99.5763 33.4742
Ref. [24] 99.6052 33.4111 99.6143 33.4654 99.6276 33.4599
Ref. [32] 99.5761 33.7153 99.6019 33.4523 99.6218 33.4687
Ref. [33] 27.2237 9.1527 99.6099 33.4660 99.6119 33.4863
Ref. [34] 28.2829 9.4960 99.6020 33.4661 99.6096 33.4721
Ours 99.6083 33.4554 99.6103 33.4612 99.6128 33.4626

Table 12
Encryption time among different algorithms (in ms).

Size Ref. [13] Ref. [24] Ref. [32] Ref. [33] Ref. [34] Ours

256�256 3.3960 2.1371 1.5446 12.408 12.582 1.5039
512�512 7.8713 8.5686 5.0891 52.857 53.816 4.9020
1024�1024 25.9505 35.1765 22.7129 229.531 232.408 19.5686
2048�2048 99.6238 136.725 117.842 1015.59 1025.78 77.6863
3072�3072 222.723 357.274 290.228 2475.39 2494.08 173.765
4096�4096 394.792 669.882 1104.82 4515.73 4556.80 308.314
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images with different sizes are listed in Table 12.
Obviously, our scheme has higher encryption speed.

5. Conclusion

In this paper, we propose a novel chaotic image
encryption approach with the substitution–diffusion
structure. The circular S-box and the key stream buffer
are introduced to improve the security. In the substitution
process, the circular S-box is used to obtain the highly
random confused image and to achieve the ideal avalanche
effect. In the diffusion process, the key steam buffer makes
the key stream different from the random sequence
generated by chaotic system, and greatly dependent on
the image. The experimental results and various analysis
on security demonstrate that the proposed approach can
achieve higher security level to resist various common
attacks, such as statistical attack, differential attack and
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brute-force attack. In the meantime, our scheme performs
faster than the existing approaches and more practical for
real image encryption.
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