Data Security and Chaos-based Data Security

Safwan El Assad

Polytech Nantes, school of engineering of the university of Nantes – France

IETR Laboratory, UMR CNRS 6164; VAADER team - site of Nantes

General scheme of a Stream Cipher

Encryption: $Ci = Pi \oplus Xi$ **Decryption:** $Pi = Ci \oplus Xi$ *Encrypt Pi* = 0, depending on the keystream bit $Xi = \begin{cases} 0 & \text{if } 0 \\ 1 & \text{otherwise} \end{cases}$ $\mathbf{1}$ *gives* $Ci = \begin{cases} 0 & \text{if } i \leq 1, 0 \end{cases}$ $\mathbf{1}$

If the keystream bit is perfectly random, i.e., it is unpredictable and has exactly 50% chance to have the value 0 or 1, then both Ci also occur with a 50% likelihood. Likewise when we encrypt $Pi = 1$ *:*

Encrypt Pi = 1, depending on the keystream bit $Xi = \begin{cases} 0 & \text{if } 0 \\ 1 & \text{otherwise} \end{cases}$ $\mathbf{1}$ *gives* $Ci = \{$

The security of a stream cipher completely depends on the Keystream generator

Safwan El Assad 81

 $\mathbf{1}$ $\boldsymbol{0}$

How to avoid the effects of the finite precision N and to obtain randomness.

- **Ultra-weak Coupling Technique & Chaotic mixing (Lozi, 2007 & 2012)**
- **Perturbation Technique (Tao, 2005, El Assad 2008)**
- **Recursive structure & Orbits Multiplexing (El Assad et. al., 2008 & 2011)**
- **Cascading Technique (Li et. al., 2001)**

General structure of the proposed Pseudo Chaotic Number Generator

(PCNG) K **Parameters** IV **Non-Volatile Memory** K, IV, Parameters $S(n-1)$ Κ **Internal State** Key-Setup IV-Setup $S(n)$ $X(n)$ **Output Function**

Keystream generator with internal feedback mode The cryptographic complexity is in the internal state

Safwan El Assad 83

Generation of the discrete chaotic samples: sequential calculus

Step 1: Read the secret *K* (from a secured memory) and *IV* from the non-volatile memory Step 2: Generation of the 1st sample: *n* = 1

$$
X_{map}(0) = X_{map} + IV_{map}
$$

$$
S(1) = f[X_{map}(0), K], X(1) = g[S(1)]
$$

or

$$
Us = LSB_{32}(IV), Up = MSB_{32}(IV)
$$

$$
S(1) = f[IV, K], X(1) = g[S(1)]
$$

Step 3: Generation of all samples: *n* = 2, *…, l_seq*

$$
S(n) = f[S(n-1), K], X(n) = g[S(n)]
$$

when (*n* = *l-seq*), then generation of a new *IV* using Linux generator "/dev/urandom", and the IV-Setup block, then save in the non-volatile memory and go to step 1 for a new execution of the program.

Generation of the discrete chaotic samples: parallel calculus

Step 1: Read the secret *K* (from a secured memory) and *Iv* from the non-volatile memory. After that, calculus, using the K-Setup block, of *Nb-cores* (here *Nb-core*s = 4) secret keys, that differs each others by *Xmap* and *IVmap* or by the parameters *K1s* and *K_{1p*}. In the two cases, these parameters are obtained by a simple left circular shifting.

Step 2 & Step 3: Same calculus as previous by all cores in parallel, using the *P-thread* library. Each core calculates (*l-seq* / *Nb-cores*) samples.

Ultra-weak Coupling Technique and Chaotic mixing PhD Student: Ons Jallouli

Where: $F[X_p(n-1)]$, $F[X_s(n-1)]$ and $F[X_l(n-1)]$ are the discrete chaotic maps PWLC, Skew Tent and Logistic respectively.

$$
X(n) = \begin{cases} X_p(n), \text{ if } 0 < X \text{th} < T \\ X_s(n) & \text{ otherwise} \end{cases} \tag{86}
$$

Ultra-weak Coupling Technique and Chaotic mixing

All the initial conditions, parameters and initialization vectors are chosen randomly from Linux generator: /dev/urandom.

The initial values:

 \langle $X_p(0) = X_p + IV_p$ $X_{s}(0) = X_{s} + IV_{s}$ $X_l(0) = X_l + IV_l$

$$
|K| = \{ |X_p| + |X_s| + |X_l| \} + \{ |P_p| + |P_s| \} + 6 \times |\varepsilon_{ij}| = 189 \text{ bits}
$$

Where:

 $|X_p| = |X_s| = |X_l| = |P_s| = 32 \; bits; \; |P_p| = 31 \; bits; |\varepsilon_{ij}| = 5 \; bits$

The key space is 2^{189} , it is large enough to make the brute-force attack infeasible

Ultra-weak Coupling Technique and Chaotic mixing

Robustness of the system against statistical attacks

Passing statistical tests: Delta-like auto-correlation, nearly zero cross correlation, Pseudo-random mapping, Nist test, Uniformity of Histograms, Chi2 test

Auto-correlation (zoom)

Safwan El Assad 89

Proposed system

Test	P-value	Prop
Frequency	0.946	100
Block-frequency	0.883	99
Cumulative-sums (2)	0.376	100
Runs	0.616	98
Longest-run	0.898	100
Rank	0.290	99
FFT	0.534	100
Non-periodic-templates (148)	0.483	99.06
Overlapping-templates	0.063	100
Universal	0.172	99
Approximate Entropy	0.419	99
Random-excursions (8)	0.335	99.12
Random-excursions-variant (18)	0.436	99.32
Serial (2)	0.478	100
Linear-complexity	0.249	98

Safwan El Assad **El Assad** 91

Histogram

Uniformity $\Leftrightarrow \chi^2_{ex} < \chi^2_{th}(N_c-1,\alpha)$

$$
\chi_{ex}^2 = \sum_{i=0}^{Nc-1} \frac{(O_i - E_i)^2}{E_i}
$$

 $N_c = 1000$: number of classes (sub – intervals)

 O_i : number of observed (calculated) samples in the ith class E_i $E_i = 10^7/N_c$: expected number of samples of a uniform distribution

Approximated probability distribution function

Perturbation Technique

Perturbation every Δ iterations Δ : Average orbit of the chaotic-map without perturbation

If
$$
n = l \times \Delta
$$
 $l = 1, 2, \cdots$
\n
$$
x_i(n) = \begin{cases} F[x_i(n-1)] & k \le i \le N-1 \\ F[x_i(n-1)] \oplus q_i(n) & 0 \le i \le k-1 \end{cases}
$$

Else

No perturbation: $X(n) = F[X(n-1)]$

Lower length of the orbit: $\bm{o}_{min} = \Delta \times \left(2^{\bm{k}}-1\right)$

Cascading Technique

Basic chaotic generator: Patent 2011

Basic chaotic generator: Patent 2011 PhD Student: Mohammad Abu Taha

Basic chaotic generator : Advantages

- **Generic scheme**
- Long orbit of *Xg(n)*: o_{min} = lcm [$\Delta_{_S}\times (2^{k1}-1)$, $\Delta_{p}\times (2^{k2}-1)$

With: $N = 32$, $k1 = 21$, $k2 = 23$ and $\Delta_{nom} \approx 2$ \boldsymbol{N} $\frac{n}{2} \times 3 = 2^{48} \Rightarrow 2^{71} \leq o_{min} \leq 2^{140}$

Large secret key space: Brute-Force Attack infeasible

Safwan El Assad 98 **Speed of a Brute-Force Attack**: (Nb of keys to be tested and the speed of each test) With **key size = 256 bits**, there are **2 ²⁵⁶ possible keys.** Assuming a computer can try a million keys a second, it will take $[2^{256} / (10^6 x 3600 x 24 x 356)] > 3 x10^{63}$ years old, a very long time, because **the universe is only 10¹⁰ years old**.

Basic chaotic generator: Correlation (zoom), Histogram, Chi2

Basic chaotic generator: Nist test

The minimum pass rate for each statistical test with the exception of the random excursion (variant) test is approximately = 96.00 for a sample size $= 100$ binary sequences.

The minimum pass rate for the random excursion (variant) test is approximately= 62.00 for a sample size = 66 binary sequences

Basic chaotic generator: Nist test and Mapping (zoom)

 $Delay = 1$

 $Delay = 2$ Delay = 3

Structure of the chaotic generator

- Generator of chaotic Sequences
- and corresponding generating
- system WO Patent
- WO/2011/121,218 A1, Oct 6, 2011 $\begin{array}{c} 1 \\ 146 \end{array}$
- PCT Extension:
- United States
- US-8781116 B2, July 15, 2014.
- Europe
- EP-2553567 B1, Sept 3, 2014.
- China :
- CN-103124955 B, April 20, 2016.

2958057

For each state *j = 1,2,…,7 of the LFSR*

Point 142 :
$$
o_{j \min_{j=1, 2, \cdots, 7}} = lcm\left[o_{j \min}, o_{j \min 2} \right]
$$

or each state
$$
j = 1, 2, ..., l
$$
 of the LFSR
Point 142 : $o_{j \text{min}_{j=1, 2, ..., T}} = lcm\left[o_{j \text{min}}, o_{j \text{min}_2} \right]$
Point 138 : $o_{j \text{min}_{j=1, 2, ..., T}} = lcm\left\{ \left[2^{k_{(2j-1)}} - 1 \right] \times \Delta_{k_{(2j-1)}}, \left[2^{k_{(2j)}} - 1 \right] \times \Delta_{k_{(2j)}} \right\}$

Point 140 :

$$
o_j \min_{j=1, 2, \dots, 7} = lcm \{ \left[2^{k_{(14+2j-1)}} - 1 \right] \times \Delta_{k_{(14+2j-1)}}, \left[2^{k_{(14+2j)}} - 1 \right] \times \Delta_{k_{(14+2j)}} \}
$$

$$
T_{Ck} = Min \left(o_j \min_{j=1, 2, \dots, 7} \right)
$$

$$
o_{\min} = 7 \times T_{Ck} \left[1 - p\% \right]
$$

Safwan El Assad ¹⁰³

General structure of chaos-based cryptosystems: Encryption side

Shannon [1949]

Confusion : measures how a change in the secret key affects the ciphered massage

Diffusion : assesses how a change in the plain message affects the ciphered one

Fridrich [1998]:

Most popular structure adopted in many chaos-based cryptosystems

Safwan El Assad 104

Chaos-based cryptosystems: two types

1er type : Separate layers of confusion and diffusion

Both layers required image-scanning to obtain ciphered image

Confusion layer:

Pixel 2D-Permutation (Cat map; Standard map; Baker map)

The image pixels are relocated without changed their values, an operation of **Substitution.**

Safwan El Assad 105 **Pixel 1-D Substitution (Finite state Skew tent map: a non linear function)** The image pixel values are substituted without or with Key-dependent on each **round**
Safwan El Assad

Chaos-based cryptosystems: 1er type

Diffusion Layer:

1-D diffusion (Discrete Logistic map, Discrete Skew tent map)

Logistic map as diffusion layer

$$
\begin{cases}\nc(i) = v(i) \oplus q \{ f[c(i-1)], L\} \\
c(-1) = Kd, \quad L = 8\n\end{cases}
$$
\n
$$
\begin{cases}\nf[c(i-1)] = 4 \times c(i-1) \times [1 - c(i-1)] \\
q[b, L] = \lfloor b \times 2^L \rfloor, \quad b = 0.b_1b_2 \cdots b_L, \quad bj \text{ is 0 or 1}\n\end{cases}
$$

vi is the value of the *i*th pixel of the permuted image *ci-1* and *cⁱ* are the values of the (*i-1*)th and *i*th pixels of the diffused image *Kd* is the diffusion key

Chaos-based cryptosystems: 1er type

Pre-Diffusion included in the confusion layer:

XOR or Add: after relocated

Add-and-Shift: before relocated

$$
v(i) = Mod \{ [v(i) \oplus v(i-1)], Q) \}
$$

Pre-Diffusion included in the confusion layer:
\n**XOR or Add: after relocated**
\n
$$
V(i) = Mod \{ [v(i) \oplus v(i-1)], Q) \}
$$
\n
$$
[vi] = Cyc \big[Mod \big[(p(i) + v(i-1)), Q \big], LSB_3(v(i-1)) \big]
$$
\n
$$
[v(-1) = Kc \in [1, (Q-1)], Q = 2^8 = 256
$$

p(i) is the current value of the plain image, *v*(*i-*1) is the value of the (*i*-1)th pixel after permutation, *Cyc* [*s*, *z*] performs the *z*-bit right cyclic shift on the binary sequence *s,* and *v*(*i*) is the resultant pixel value in the permuted image.

Chaotic generator_s of dynamic keys (encryption keys):

Logistic, Skew tent, PWLCM, Lorenz, basic generator, combined maps

[Fridrich , 1998], [Chen et al., 2004], [Lian et al., 2005a], [Lian et al., 2005b], [Wong et al., 2008], Masuda et al., 2006], [Farajallah et al., 2013], [Wang et al., 2009], [El Assad et al., 2008], [Caragata et al., 2014], El Assad et al., 2014].

Proposed chaos-based cryptosystem (GreenCom 2013), [Farajallah et al.]

Cryptosystem based on variable control keys

Equations of the Skew tent map and inverse Skew tent maps

Finite state Skew tent map as substitution layer :

Robust nonlinear layer, resists to the chosen cipher text attack $(T \cap T)$

$$
Y = S_a(X) = \begin{cases} \boxed{Q}{a}X & 0 \le X \le a & \text{Structure of the dynamic key } Ks \\ \boxed{Q}{Q-a}(Q-X) \end{cases} + 1 & a < X < Q \\ Ks = \boxed{Ks_1 \parallel Ks_2 \parallel \cdots Ks_r} \\ \text{Inverse Skew tent map} \qquad 1 \le a_{j,i} < Q = 2^8 \\ X = S_a^{-1}(Y) = \begin{cases} \xi 1 & \text{if } \theta(Y) = Y \text{ and } \frac{\xi 1}{a} > \frac{Q-\xi 2}{Q-a} \\ \xi 2 & \text{if } \theta(Y) = Y \text{ and } \frac{\xi 1}{a} \le \frac{Q-\xi 2}{Q-a} \\ \frac{\xi 1}{a} & \frac{\xi 2}{Q-a} \le \frac{Q-\xi 2}{Q-a} \\ \xi 3 = \boxed{a} \\ \frac{a}{Q}Y \\ \frac{\theta(Y)}{\theta(Y)} = Y + 1 \end{cases} \quad \xi \ge \frac{Q}{Q-a} \xi \ge \frac{Q}{Q} \xi \quad \xi \ge \frac{Q}{Q} \xi \quad \xi \ge \frac{Q}{Q} \xi \ge \frac{Q}{Q} \xi \quad \xi \ge \frac{Q}{Q-a} \xi \ge \frac{
$$

 $\overline{\mathcal{C}}$ One to one mapping: Implemented by lookup tables

Safwan El Assad 109 Key generator : A simplified version of the basic chaotic generator of our Patent

Chaos-based cryptosystems: 1er type

2-D Cat map as permutation layer

$$
\begin{bmatrix} i_n \\ j_n \end{bmatrix} = Mod \begin{bmatrix} 1 & u \\ v & 1+uv \end{bmatrix} \times \begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} ri+rij \\ rj \end{bmatrix}, \begin{bmatrix} M \\ M \end{bmatrix} \begin{bmatrix} 0 \le u, v, ri, rj \le M-1 = 2^q-1 \end{bmatrix}
$$

Structure of the dynamic key *Kp*

$$
Kp = [kp_1 ||kp_2|| \cdots ||kp_r]
$$

\n
$$
kp_l = [u_l, v_l, ri_l, rj_l] \quad l = 1, \cdots, rp
$$

Where *i*, *j* and *i_n*, *j*_n are the original and permuted pixel positions of the *M X M square* matrix, with $M = 2^q$.

The Cat map is bijective, so each point in the square matrix is transformed to another point uniquely.

Chaos-based cryptosystems: 1er type

Safwan El Assad 111 **Koo et. al., 2006**

Chaos-based cryptosystems: 2nd type

2nd type : Combined layers of confusion and diffusion

The confusion and diffusion processes are performed simultaneously in a single scan of plain-image pixels. More Speed

[Wong et al., 2009], [Wang et al., 2011], [Zhang et al., 2013], [Farajallah et al., 2016]

Safwan El Assad 112

Chaos-based cryptosystems: 2nd type

 2nd type : The diffusion process at the pixel level is governed by the confusion one

 $\overline{}$

Chaos-based cryptosystems: 2nd type

Advantages:

- **The sensitivity to any modifications in the plain-image is increased. Indeed, equation (1) shows that** *c***(***iⁿ* **,** *jⁿ* **) is influenced by both the diffusion key** *Kd* **and the previously ciphered pixel value z.**
- **The confusion effect can't be removed using a homogeneous plain-image:** 1 *Kp*

$$
HI \rightarrow C1
$$

\n
$$
HI \rightarrow C2 \neq C1
$$

In separate confusion – diffusion architecture : $\quad c(i) = v(i) \oplus q\left\{f\left[c(i-1)\right], L\right\}$

$$
HI \rightarrow c1(i) = v \oplus q \{ f[c1(i-1)], L \} \rightarrow C1
$$

\n
$$
HI \rightarrow c2(i) = v \oplus q \{ f[c2(i-1)], L \} \rightarrow C2 = C1
$$

Chaos-based cryptosystems: 2nd type Reverse use of 2-D chaotic map: 1er algo of [Zhang et al., 2013] $[i_n, j_n]$ = Cat $[(i, j, u, v), M]$ $(i, j) = p(i_n, j_n) \oplus f(z)$ (3) $z = c(i, j)$ $\left[\left[i_{n}, j_{n}\right]\right]=$ $\left\{c(i, j) = p(i_n, j_n) \oplus \right\}$ $z = c(i, j)$ *n n n n* i_{n} , j_{n} = Cat (i, j, u, v) , M $c(i, j) = p(i_n, j_n) \oplus f(z)$ **1 2 3 1 2 3**

 $\mu z \times (1-z) \times 1000$, (256) $\left\{\right.$ Plain-image

(4)

- (-1) **!** $z(-1) =$ $z(-1) = Kd$
- 2 Logistic maps are used as key generator: *Kp*, *Kd*

 $(z) = Mod\{[\mu z \times (1 - z) \times 1000],(256)\}\$

 $\int f(z) = Mod \int \mu z \times (1-z) \times$

 $f(z) = Mod \{ | \mu z \times (1 - z)$

 Partial Cryptanalysis of the 1er algorithm of Zhang by removing the diffusion effect using equation (5)

$$
\begin{cases}\nc(k) = p(k_n) \oplus f[z(k)] = p(k_n) \oplus f[c(k-1)] \\
p(k_n) = c(k) \oplus f[c(k-1)] \\
k = i \times M + j \qquad k_n = i_n \times M + j_n\n\end{cases} (5)
$$

P is a permuted version

Ciphered-image

of the original plain-image

[Farajallah et al., 2015, to appear in IJBC Journal]

Safwan El Assad 115

 $\overline{}$
Chaos-based cryptosystems: 2nd type

2nd algorithm of [Zhang et al., 2013]

 $\overline{}$

 $\overline{}$

 $\overline{}$

2 Logistic maps: $\text{rand}(z) = \text{Mod}\left\{\left[\mu z \times (1-z) \times 1000\right], (256)\right\}$ (8) 116 *rand*1, *rand*2 are a random arrays with 256 distinct elements generated by

Chaos-based cryptosystems: 2nd type

Proposed algorithm

$$
p_l(k) \oplus s_{l-1}(k) \oplus f(y_l(k-1))
$$

$$
c_l(k_n) = LSB_8[y_l(k)]
$$

$$
s_{l-1}(k) = \begin{cases} iv(k) & \text{if } l = 0\\ c_{l-1}(k) & \text{if } l > 0 \end{cases}
$$

Diffusion process :

V1: Discrete Logistic map

with $N = 32$ bits

- V2: Discrete Skew tent map with $N = 32$ bits
- V3 : Look up table with *N* = 8 bits of the Skew tent map

[Farajallah et al., 2016, in IJBC Journal]

Performance in terms of time consuming

Average Encryption / Decryption time Encryption Throughput Number of needed Cycles per Bytes

 $ET =$ **Image Size (Byte) Average Encyption Time (second)**

 $NCpB =$ **CPU Speef (Hertz)** $ET(Byte/s)$

Average is done by encrypting the test image at least 100 times with different secret keys each time

C language, PC: 3.1 GHz processor Intel Core TM i3-2100 CPU, 4GB RAM Windows 7, 32-bit operating system.

Performance in terms of time consuming

Lena image of size 256 X 256 X 3

Crypto3-V1 : Discrete Logistic map-32 bit (as diffusion)

Crypto3-V2: Discrete Skew tent map-32 bit (as diffusion)

Crypto3-V3: Look up table-8 bit of the Skew tent map (as diffusion)

Statistical analysis: Histogram and correlation (Confusion property)

Safwan El Assad 120 Correlation of adjacent horizontal pixels of plain and ciphered images

Cryptanalytic Attacks: ordered, for an attacker, from the hardest type to the easiest:

- **1) Ciphertext only: the attacker has the ciphertext of several messages.**
- **2) Known plaintext attack: the attacker has access to the ciphertext of several messages and their corresponding plaintext.**
- **3) Chosen plaintext attack: the attacker has obtained temporary access to the encryption machinery, and then he can choose a specific plaintext to encrypt and obtain the corresponding ciphertext.**
- **4) Chosen ciphertext attack: the attacker has obtained temporary access to the decryption machinery, and then he can choose a specific ciphertext to decrypt and obtain the corresponding plaintext.**

If a cryptosystem is able to resist chosen plaintext attack, then it is also resistant to all the other attacks. It is computationally secure

Plaintext sensitivity attack: Diffusion property

To resist the chosen plaintext attack and the differential attack, the cryptosystem should be highly sensitive to one bit change in the plaintext. We evaluate the plaintext sensitivity as follows:

For each of the 1000 random secret keys, we compute the Hamming distance, versus the number of rounds *r*, between two cipher-text images *C1* and *C2*, resulted from two chosen plaintext images *I1* and *I2,* with:

 $11 = [0, 0, ..., 0]$ and $12 = [0, 0, ..., 1, ..., 0]$, differ only by one bit (chosen randomly).

$$
HD(C1, C2) = \frac{1}{|Ib|} \sum_{k=1}^{|Ib|} C1(k) \oplus C2(k)
$$

with $|Ib| = L \times C \times P \times 8$ size of the image in bits

If the Hamming distance is close to 50% (probability of bit changes close to 1/2), then the previous attacks would become ineffective.

This test gives also the minimum number of rounds *r***, needed to overcome the plaintext sensitivity attack.**

Plaintext sensitivity attack: Diffusion property

NPCR **and** *UACI* **criteria**

Number of pixel change rate (*NPCR***)**

Average Hamming distance (over 1000 keys) versus the number of rounds *r*. With $r=1$, the effect avalanche is reached.

 $= 99.609 \%$
= 33.463 %
0 if C1(i, j, p) = C2(i, j, p) **2 99.609 %
** *if C***1(***i***,** *j***,** *p***) =** *C***2(***i***,** *j***,** *p***
** *if**C***1(***i***,** *j***,** *p***) =** *C***2(***i***,** *j***,** *p* For two random images the expected values of *NPCR* and *UACI* are: *E(NPCR)* **= 99.609 %** *E(UACI)* **= 33.463 %**

$$
NPCR = \frac{\sum\limits_{p=1}^{P} \sum\limits_{i=1}^{L} D(i, j, p)}{L \times C \times P} \times 100\%
$$

R)
$$
E(UGCI) = 33.463\%
$$

\n $D(i, j, p) =\begin{cases} 0 \text{ if } C1(i, j, p) = C2(i, j, p) \\ 1 \text{ if } C1(i, j, p) \neq C2(i, j, p) \end{cases}$

Unified average changing intensity (UACI)

$$
UACI = \frac{1}{M \times N \times P} \times \sum_{p=1}^{P} \sum_{i=1}^{L} \sum_{j=1}^{C} \frac{|C1(i, j, p) - C2(i, j, p)|}{255} \times 100\%
$$

Safwan El Assad 123

Key sensitivity test

A good encryption scheme should be sensitive to the secret key in process of both encryption and decryption.

To quantify the effectiveness of any algorithm, researchers use the *NPCR* and *UACI* criteria

Enhancement of two spatial steganography algorithms by using a chaotic system: comparative analysis

D. Battikh, S. El Assad *B. Bakhache, O. Deforges, *M. Khalil

Polytech Nantes, school of engineering of the university of Nantes – France IETR Laboratory, UMR CNRS 6164; Image team - site of Nantes

***Lebanese International University of Beirut, Lebanon**

The 8th International Conference for Internet Technology and Secured Transactions, ICITST-2013, December, 9 - 12, 2013, London, UK

Outline

- **Principle of data hiding in spatial LSB domain**
- **Structure of the proposed chaos-based steganography systems**
- **Enhanced Adaptive data hiding in Edge areas of images with spatial Low Significant Bit domain systems : EAE-LSB**
- **Enhanced Edge Adaptive Image Steganography Based on LSB Matching Revisited : EEA-LSBMR**
- **Experimental Results.**
- **Conclusion and perspectives.**

Principle of data hiding in spatial LSB domain

Structure of the proposed chaos-based steganography systems

EAE-LSB : Adaptive Embedding process

EAE-LSB : Adaptive Embedding process

- **Divide image in 2-pixel overlapped blocks**
- Chose block (p_i , p_{i+1}) using chaotic index (*Ind*)
- **-** Compute block difference $d = |p_i p_{i+1}|$, find its corresponding range R_i and identify *K*: $R_1 = [0, 15] \Rightarrow K = 3$; $R_2 = [16, 31] \Rightarrow K = 4$; $R_3 = [32, 255] \Rightarrow K = 5$
- Hide 2K bits message in every block using K-LSB insertion => (p'_i, p'_{i+1})
- **-** Compute block difference $d' = |p'_{i} p'_{i+1}|$, and test if { d , d' } are in the same range *R^l .*
- **If yes, than Stego-block (p'_i, p'_{i+1}) is carrying the secret message.**
- Else, apply the LSB adjustment process => Stego-block (p''_i, p''_{i+1})

EAE-LSB : Adaptive Embedding process: LSB adjustment process

Input :
$$
(p_i, p_{i+1}), (p_i, p_{i+1})
$$
; Output : (p_i, p_{i+1})
\nIf $(d < d)$
\nif $(p'_i >= p'_{i+1})$
\n $(p_i^*, p_{i+1}^*) = Best_Choice_Of \{(p_i, p_{i+1}^*, +2^K), (p_i^* - 2^K, p_{i+1}^*)\}$
\nelse
\n $(p_i^*, p_{i+1}^*) = Best_Choice_Of \{(p_i, p_{i+1}^*, -2^K), (p_i^* + 2^K, p_{i+1}^*)\}$
\nElse $(d > d)$
\nif $(p_i^* >= p_{i+1}^*)$
\n $(p_i^*, p_{i+1}^*) = Best_Choice_Of \{(p_i, p_{i+1}^*, -2^K), (p_i^* + 2^K, p_{i+1}^*)\}$
\nelse
\n $(p_i^*, p_{i+1}^*) = Best_Choice_Of \{(p_i, p_{i+1}^*, -2^K), (p_i^* - 2^K, p_{i+1}^*)\}$
\nEnd

Best_Choice_of = MSE {
$$
(p_i, p_{i+1}), (p''_i, p''_{i+1})
$$
}
MSE = { $(p_i-p'')^2 + (p_{i+1}-p''_{i+1})^2$ }

Example of Embedding process

Secret bits : 1011 0110

EAE-LSB : Extraction process

- Divide stegoimage in overlapped 2-pixels blocks
- Select block chaotically (p_i , p_{i+1}) as for insertion
- Compute block difference d and identify *K*-LSBs for the corresponding range
- **Extract KLSB secret bits from** p_i **, KLSB secret bits from** p_{i+1} **and add to** message vector V
- Reconstruct secret message from 2K bits sequence groups of V

EEA-LSBMR : Adaptive Embedding process

EEA-LSBMR : Adaptive Embedding process: 4 steps

1- Preprocess:

Divide the cover image into non-overlapping blocks of *B^z* x *B^z* pixels

 $(Bz = 4, 8, 12).$

- Rotate each block by a random degree in the range of $(0^\circ, 90^\circ, 180^\circ, 270^\circ)$ according to a secret key *K*¹
- Rearrange the resulting image as a row vector *V* by raster scanning, and then divide V into no overlapping 2-pixel blocks : (p_i, p_{i+1}) .
- 2- Capacity test and zone selection:
- For each $t \in \{1, 2, \ldots, 31\}$, calculate the set of pixel pairs such as:
- **Then, calculate the threshold T by:** where : |*EU(t)*| denotes the total number elements in the set of *EU(t)* and $EU(t) = \{(p_i, p_{i+1}) / |p_i - p_{i+1}| \ge t, \forall (p_i, p_{i+1}) \in V\}$
• Then, calculate the threshold T by : $T = \arg \max_t \{2 \times |EU(t)|\}$
where : $|EU(t)|$ denotes the total number elements in the set o
|M| the size of the secret message. $T = \argmax_t \left\{ 2 \times |EU(t)| \ge |M| \right\}$

EEA-LSBMR : Adaptive Embedding process: 4 steps

3- Data hiding:

- **Calculate the set of:** : Adaptive Embedding process: 4 steps
 $EU(T) = \left\{ (p_i, p_{i+1}) / \left| p_i - p_{i+1} \right| \ge T, \forall (p_i, p_{i+1}) \in V \right\}$
- **Select in a chaotic manner a block of the above set and perform data** hiding according to the following 4 cases: ck of the above set and perform
4 cases:
 $p_{i+1}^j = m_{i+1} \rightarrow (p'_i, p'_{i+1}) = (p_i, p_{i+1})$
 $p'_{i+1} = (p_i, p_{i+1})$ Calculate the set of: $EU(T) = \{(p_i, p_{i+1})/|p_i - p_{i+1}| \ge T, \forall (p_i, p_{i+1}) \in V\}$
Select in a chaotic manner a block of the above set and perform data
hiding according to the following 4 cases:
Case 1: $LSB(p_i) = m_i \& f(p_i, p_{i+1}) = m_{i+1} \$ *i* io it is manner a block of the above set and perform and the following 4 cases:
 $\hat{p}_i = m_i \& f(p_i, p_{i+1}) = m_{i+1} \rightarrow (p'_i, p'_{i+1}) = (p_i, p_i)$
 $\hat{p}_i = m_i \& f(p_i, p_{i+1}) \neq m_{i+1} \rightarrow (p'_i, p'_{i+1}) = (p_i, p_i)$

1 1 1 1 *i i i i i i i i i* = $m_{i+1} \rightarrow (p'_i, p'_{i+1}) = (p_i, p_{i+1})$
 $\neq m_{i+1} \rightarrow (p'_i, p'_{i+1}) = (p_i, p_{i+1} + r)$
 $+1) = m_{i+1} \rightarrow (p'_i, p'_{i+1}) = (p_i - 1, p_{i+1})$
 $+1) \neq m_{i+1} \rightarrow (p'_i, p'_{i+1}) = (p_i + 1, p_{i+1})$ g according to the following 4 cases:

1: $LSB(p_i) = m_i \& f(p_i, p_{i+1}) = m_{i+1} \rightarrow (p'_i, p'_{i+1}) = (p_i, p_{i+1})$

2: $LSB(p_i) = m_i \& f(p_i, p_{i+1}) \neq m_{i+1} \rightarrow (p'_i, p'_{i+1}) = (p_i, p_{i+1} + r)$

3: $LSB(p_i) \neq m_i \& f(p_i - 1, p_{i+1}) = m_{i+1} \rightarrow (p'_i, p'_{i+1}) = (p_i - 1, p$ 2: LSB(p_i) = m_i & $f(p_i, p_{i+1}) = m_{i+1} \rightarrow (p'_i, p'_{i+1}) = (p_i, p_{i+1})$

2: LSB(p_i) = m_i & $f(p_i, p_{i+1}) = m_{i+1} \rightarrow (p'_i, p'_{i+1}) = (p_i, p_{i+1})$

2: LSB(p_i) = m_i & $f(p_i, p_{i+1}) \neq m_{i+1} \rightarrow (p'_i, p'_{i+1}) = (p_i, p_{i+1} + r)$

3: LSB(p_i) 4 according to the following 4 cases:

1: $LSB(p_i) = m_i \& f(p_i, p_{i+1}) = m_{i+1} -$

2: $LSB(p_i) = m_i \& f(p_i, p_{i+1}) \neq m_{i+1} -$

3: $LSB(p_i) \neq m_i \& f(p_i - 1, p_{i+1}) = m_i$

4: $LSB(p_i) \neq m_i \& f(p_i - 1, p_{i+1}) \neq m_i$ *i*) = m_i & $f(p_i, p_{i+1}) = m_{i+1} \rightarrow (p'_i, p'_{i+1}) = (p_i, p_{i+1})$
 i_i) = m_i & $f(p_i, p_{i+1}) \neq m_{i+1} \rightarrow (p'_i, p'_{i+1}) = (p_i, p_{i+1} + r)$
 i_i) $\neq m_i$ & $f(p_i - 1, p_{i+1}) = m_{i+1} \rightarrow (p'_i, p'_{i+1}) = (p_i - 1, p_i)$
 i_i) $\neq m_i$ & $f(p_i - 1, p_{i+1})$ Select in a chaotic manner a block of the above set and perform data

hiding according to the following 4 cases:
 Case 1: $LSB(p_i) = m_i \& f(p_i, p_{i+1}) = m_{i+1} \rightarrow (p'_i, p'_{i+1}) = (p_i, p_{i+1})$
 Case 2: $LSB(p_i) = m_i \& f(p_i, p_{i+1}) \neq m_{i+1} \$ *Case 1: LSB*(p_i) = m_i & $f(p_i, p_{i+1}) = m_{i+1} \rightarrow (p'_i, p'_{i+1}) = (p_i, p_{i+1})$
 Case 2: LSB(p_i) = m_i & $f(p_i, p_{i+1}) = m_{i+1} \rightarrow (p'_i, p'_{i+1}) = (p_i, p_{i+1})$
 Case 2: LSB(p_i) = m_i & $f(p_i, p_{i+1}) \neq m_{i+1} \rightarrow (p'_i, p'_{i+1}) = ($ *Case 1: LSB*(p_i) = m_i & $f(p_i, p_{i+1}) = m_{i+1}$
 Case 2: LSB(p_i) = m_i & $f(p_i, p_{i+1}) \neq m_{i+1}$
 Case 2: LSB(p_i) = m_i & $f(p_i, p_{i+1}) \neq m_{i+1}$
 Case 3: LSB(p_i) $\neq m_i$ & $f(p_i - 1, p_{i+1}) \neq m$
 Case 4: LSB(p 4 cases:
 $p_{i+1} = m_{i+1} \rightarrow (p'_i, p'_{i+1}) = (p_i, p_{i+1})$
 $p_{i+1} \neq m_{i+1} \rightarrow (p'_i, p'_{i+1}) = (p_i, p_{i+1} + r)$
 $p_{i+1} = m_{i+1} \rightarrow (p'_i, p'_{i+1}) = (p_i, -1, p_{i+1})$ $\ddot{}$ c manner a block of the above set and perform data
to the following 4 cases:
= m_i & $f(p_i, p_{i+1}) = m_{i+1} \rightarrow (p'_i, p'_{i+1}) = (p_i, p_{i+1})$
= m_i & $f(p_i, p_{i+1}) = m_{i+1} \rightarrow (p'_i, p'_{i+1}) = (p_i, p_{i+1})$
= m_i & $f(p_i, p_{i+1}) \neq m_{i+1} \rightarrow (p'_i,$ to the following 4 cases:

= m_i & $f(p_i, p_{i+1}) = m_{i+1} \rightarrow (p'_i, p'_{i+1}) = (p_i, p_{i+1})$

= m_i & $f(p_i, p_{i+1}) \neq m_{i+1} \rightarrow (p'_i, p'_{i+1}) = (p_i, p_{i+1} + r)$
 $\neq m_i$ & $f(p_i - 1, p_{i+1}) = m_{i+1} \rightarrow (p'_i, p'_{i+1}) = (p_i - 1, p_{i+1})$
 $\neq m_i$ & $f(p_i - 1$ to the following 4 cases:

= m_i & $f(p_i, p_{i+1}) = m_{i+1} \rightarrow (p'_i, p'_{i+1}) = (p_i, p_{i+1})$

= m_i & $f(p_i, p_{i+1}) \neq m_{i+1} \rightarrow (p'_i, p'_{i+1}) = (p_i, p_{i+1} + r)$
 $\neq m_i$ & $f(p_i - 1, p_{i+1}) = m_{i+1} \rightarrow (p'_i, p'_{i+1}) = (p_i - 1, p_{i+1})$
 $\neq m_i$ & $f(p_i - 1$

where m_i and m_{i+1} denote 2 secret bits to embed r is a random value in $[-1, +1]$ and $f(a,b)$ 2 *a* $f(a,b) = LSB\left(\frac{a}{2} + b\right)$

 (p'_i, p'_{i+1}) : Pixel pair after data hiding

EEA-LSBMR : Adaptive Embedding process: 4 steps

3- Data hiding:

if
$$
(p'_i, p'_{i+1}) \notin [0, 255]
$$
 or $|p'_i - p'_{i+1}| < T \Rightarrow$ *readjustment*

Readjustment: $(p''_i, p''_{i+1}) = \arg \min_{(e_1, e_2)} \{|e_1 - p_i| + |e_2 - p_{i+1}|\}$

with:

$$
\begin{cases}\ne_1 = p'_i + 4q_1 & q_1, q_2 \in Z \\
e_2 = p'_{i+1} + 2q_2 & q_1, q_2 \in Z\n\end{cases} (1)
$$
\n
$$
|e_1 - e_2| \ge T, \ 0 \le e_1, e_2 \le 255, \ 0 \le T \le 31
$$

Finally :

$$
LSB(p''_i) = m_i \& f(p''_i, p''_{i+1}) = m_{i+1}
$$

with $0 \le p''_i, p''_{i+1} \le 255, |p''_i - p''_{i+1}| \ge T$

4- Post process:

- The resulting image is divided into non overlapping *B^z x B^z* blocks. The blocks are then rotated by a random degree in the range of (0°, 90° , 180°, 270°) according to a secret key K_1 . if $(p'_i, p'_{i+1}) \notin [0, 255]$ or $|p'_i - p'_{i+1}| < T \Rightarrow$ readjustment

iustment: $(p''_i, p''_{i+1}) = \arg \min_{(e_1, e_2)} \{|e_1 - p_i| + |e_2 - p_{i+1}|\}$
 $\begin{cases} e_1 = p'_i + 4q_1 & q_1, q_2 \in Z \\ e_2 = p'_{i+1} + 2q_2 & q_1, q_2 \in Z \end{cases}$ (1)
 $|e_1 - e_2| \geq T, 0 \leq e_1$
- (*T*, *B*_z) are embedded in the stego image into a preset region.

EEA-LSBMR : Example of Embedding process

Let suppose:

$$
p_i - p_{i+1} = 19 \ge T
$$

\n
$$
(m_i, m_{i+1}) = (1, 0) \implies \text{We verify that:}
$$

\n
$$
T = 19
$$

\n
$$
\begin{cases}\nLSB(62) = 0 \ne m_i \\
LSB\left(\left(\frac{62 - 1}{2}\right)\right) + 81\n\end{cases} = 1 \ne m_{i+1}
$$

Therefore, we invoke case 4: $\begin{bmatrix} 1.5B \\ 2 \end{bmatrix}$ $\begin{bmatrix} 2.5B \\ 2 \end{bmatrix}$ $\begin{bmatrix} 2.5B \\ 2.5B \end{bmatrix}$
(p'_i, p'_{i+1}) = $(p_i + 1, p_{i+1})$ = (63, 81)

Then the new absolute difference is:

$$
|p'_i - p'_{i+1}| = |63 - 81| = 18 < T \Rightarrow
$$
 readjustment according to (1) and finally get :
\n $q_1 = 0, q_2 = 1$
\n $p''_i = p'_i + 4q_1 = 63 + 4 \times 0 = 63$
\n $p''_{i+1} = p'_{i+1} + 2q_2 = 81 + 2 \times 1 = 83$

In such case, we have:

$$
|p''_i - p''_{i+1}| |63 - 83| = 20 \ge T \text{ and}
$$

\n
$$
\begin{cases}\nLSB(63) = m_i = 1 \\
LSB\left\{\left[\left(\frac{63 - 1}{2}\right)\right] + 83\right\} = m_{i+1} = 0\n\end{cases}
$$

EEA-LSBMR : Extraction process

- Extract (*T*, *B^z*)
- Divide the stego image into blocks of B _z x B _z pixels and rotate the blocks by random degrees based on the secret key \mathcal{K}_{1} .
- Rearrange the resulting image as a row vector *Vs* by raster scanning and divide *Vs* into no overlapping 2-pixel blocks : (*pⁱ* , *pi+1*).

EEA-LSBMR : Extraction process

- Chose blocks (p_i , p_{i+1}) whose absolute differences are greater than or equal to *T* according to the chaotic system.
- Extract the two secret bits from each qualified bloc as follows :

according to the chaotic system.
two secret bits from each qualified bloc as follow

$$
m_i = LSB(p_i), \quad m_{i+1} = LSB\left(\left\lfloor \frac{p_i}{2} \right\rfloor + p_{i+1} \right)
$$

For instance, if $(p_i, p_{i+1}) = (63, 83)$, with $T=19$, so, we get the secret bits:

$$
m_i = LSB(63) = 1
$$
, $m_{i+1} = LSB\left(\left\lfloor \frac{63}{2} \right\rfloor + 83\right) = 0$

Experimental results : Embedding-Extraction without and with chaos

Experimental results : Embedding-Extraction without and with chaos EEA-LSBMR

Experimental Results

• Same good performances in terms of secret message capacity and image quality

$$
PSNR = 10 \times \log_{10}(\frac{M \text{ ax } I^{2}(i, j)}{\frac{1}{M \times N} (\sum_{i=0}^{M-1} \sum_{j=0}^{N-1} [I(i, j) - I_{s}(i, j)]})^{2})
$$

Conclusion and perspectives

Conclusion :

- We demonstrated the contribution of the chaos in the information hiding and security.
- We designed an enhancement (message security) of two spatial steganographic algorithms: EAE-LSB and EEA-LSBMR, that have low distortions and high insertion capacity

Perspectives :

- Study the robustness of the above chaos-based steganography algorithms against steganalysis
- Design secure chaos-based steganography systems in frequency domain

- 1. Abbas Cheddad, Joan Condell, Kevin Curran, Paul Mc Kevitt, Digital image steganography: Survey and analysis of current methods, Signal Processing, Volume 90, Issue 3, March 2010, Pages 727-752
- 2. C.-H. Yang, C.-Y. Weng, and S.-J. Wang, "Adaptive data hiding in edge areas of images with spatial LSB domain systems", IEEE Trans. on information forensics and security, vol. 3, no. 3, september 2008.
- 3. Luo, W., Huang, F. et Huang, J. (2010). Edge Adaptive Image Steganography Based on LSB Matching Revisited. IEEE transactions on information forensics and security, Vol. 5, NO. 2.
- 4. T.S. Parker, L.O. Chua, "Practical Numerical Algorithms for Chaotic Systems," Springer-Verlag, 1989.
- 5. A. Baranovsky, D. Dames, "Design of One-Dimensional chaotic maps with prescribed properties," International Journal of Bifurcationand chaos, vol. 5, pp. 1585-1598, Feb. 1995.
- 6. S. El Assad, H. Noura, I.Taralova, "Design and Analyses of Efficient Chaotic Generators for Cryptosystems," wcecs, pp.3-12, Advances in Electrical and Electronics Engineering - IAENG Special Edition of the World Congress on Engineering and Computer Science 2008, 2008

- 7. S. El Assad (85%), H. Noura (15%), Generator of chaotic Sequences and corresponding generating system WO Patent WO/2011/121,218, 2011.
- 8. S. El Assad, "Chaos Based Information Hiding and Security," in 7th International Conference for Internet Technology and Secured Transactions, IEEE, London, United Kingdom, 10-12 Dec. 2012, pp. 67- 72. Invited paper.
- 9. C.Y. Song, Y.L. Qiao, and X.Z. Zhang, "An image encryption scheme based on new spatiotemporal chaos," Optik, October 2012
- 10.R. L. Tataru, D. Battikh, S. El Assad, H. Noura, O. Deforges, " Enhanced Adaptive Data Hiding in Spatial LSB Domain by using Chaotic Sequences" . [IIH-MSP 2012:](http://www.informatik.uni-trier.de/~ley/db/conf/iih-msp/iih-msp2012.html) 85-88
- 11.C.-K. Chan and L.M Cheng, "Hiding data in images by simple LSB substitution ", The Journal of the Pattern Recognition society, pp. 469- 474, 2004.
- 12.Mielikainen, J. (2006). LSB matching revisited. IEEE Signal Process. Lett., vol. 13, no. 5, pp. 285–287

Thanks for your Attention

Questions ?

[Burda K, 2006], "Error Propagation in Various Cipher Block Modes". International Journal of Computer Science and Network Security, vol. 6, no. 11, 2006

[Caragata et al.,], "On the security of a new image encryption scheme based on a chaotic function". Signal, Image and Video Processing, vol. 8, Issue 4, pp. 641-646.

[Chen et al., 2004], "A symmetric image encryption schemes based on 3D chaotic cat maps". Chaos Solitons and Fractals vol. 21, 2004, pp. 749-761.

[Dworkin, 2001], "Recommendation for Block Cipher Modes of Operation; Methods and Techniques". NIST Special Publication 800-38A, 2001 Edition.

[El Assad et al., 2008], "Design and analyses of efficient chaotic generators for cryptosystems" . WCECS, pp. 3-12, 2008, Advances in Electrical and Electronics Engineering - IAENG Special Edition of the World Congress on Engineering and Computer Science, 2008.

[El Assad et Noura, 2011], "Generator of chaotic Sequences and corresponding generating system" WO Patent WO/2011/121,218,2011. PCT Extension: Europe : EP-2553567 A1, February 2013. China : CN-103124955 A, May 2013. United States: US-20130170641, July 2013.

[El Assad et al., 2014],"Chaos-based Block Ciphers: An Overview", IEEE, 10th International Conference on Communications, COMM-2014, Bucharest, Romania, May 2014, pp. 23-26. Invited talk

[El Assad, Farajallah, 2016], "A new Chaos-Based Image Encryption System". Signal Processing: Image Communication 41, (2016) 144-157.

[Farajallah et al., 2013], "Dynamic adjustment of the chaos-based security in real-time energy harvesting sensors". IEEE, International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, Beijing, China, August 2013, pp. 282-289.

[Farajallah et al., 2016], "Fast and secure chaos-based cryptosystem for images"., International Journal of Bifurcation and Chaos, IJBC, Vol. 26, No. 2 (2016) 1650021 (21 pages).

[Fridrich , 1998], "Symmetric ciphers based on two-dimensional chaotic maps". Int. J. Bifurcat Chaos, vol. 8, no. 6, 1998, pp. 1259-1284.

[Lian et al., 2005a], "A bloc cipher based on a suitable use of the chaotic standard map". Chaos Solitons and Fractals, vol. 26, 2005, pp. 117-129.

[Lian et al., 2005b], "Security analysis of a chaos-based image encryption algorithm". Physica A vol. 351, 2005, pp. 645-661.

[Lozi, 2012],"Emergence of randomness from chaos", International Journal of Bifurcation and Chaos, IJBC, Vol. 22, No. 2 (2012) 1250021 (15 pages).

[Masuda et al., 2006], "Chaotic block ciphers: from theory to practical algorithms". IEEE Trans on Circuits and Systems-I, vol. 53, no. 6, 2006, pp. 1341–1352.

[Abu Taha et al., 2017], "Design and Efficient Implementation of a Chaos-based Stream Cipher", IJITST, International Journal of Internet Technology and Secured Transactions, to be published, 2017, 15 pages

[Schneier, 1996], "Applied Cryptography — Protocols, Algorithms, and Source Code", C. John Wiley & Sons, Inc., New York 2nd edition.

[Zhang et al., 2013], "An image encryption scheme using reverse 2-dimentional chaotic map and dependent diffusion". Commun Nonlinear Simulat, vo. 18, 2013, pp. 2066- 2080.

[Wang et al., 2009], "A chaos-based image encryption algorithm with variable control parameters". Chaos Solitons and Fractals vol. 41, 2009, pp. 1773-1783.

[Wang et al., 2011], "A new chaos-based fast image encryption algorithm". Applied Soft Computing, vol. 11, 2011, pp. 514-522.

[Wong et al., 2008], "A fast image encryption scheme based on chaotic standard map". Physics Letters A, vol. 372, no. 15, 2008, pp. 2645-2652.

[Wong et al., 2009], "An efficient diffusion approach for chaos-based image encryption". Chaos Solitons and Fractals vol. 41, 2009, pp. 2652-2663.