Plus courts chemins

Nadia Brauner

Nadia.Brauner@imag.fr

2 Plus court chemin

- 3 DAG : l'algorithme de Bellman
- 4 Poids positifs : l'algorithme de Dijkstra

DAG et Bellman

Graphes orientés

Graphes orientés

- 3 DAG: l'algorithme de Bellman
- 4 Poids positifs: l'algorithme de Dijkstra

Graphe orienté : G = (V, A) où

- V est un ensemble fini
- ullet A est un ensemble de couples d'éléments de V

couple ordonné : $uv \neq vu^1$

A est l'ensemble des arcs du graphe

1. Formellement l'arc uv devrait s'écrire (u, v)

Soit G = (V, E) un graphe non orienté. En orientant toutes les arêtes de G, combien de graphes différents peut-on créer?

Pour un sommet $u \in V$

- $d^-(u) = |\{v/vu \in A\}|$ est le **degré entrant** de u [in-degree]
- $d^+(u) = |\{v/uv \in A\}|$ est le **degré sortant** de u [out-degree]
- si $d^-(u) = 0$ alors u est une **source**

[source]

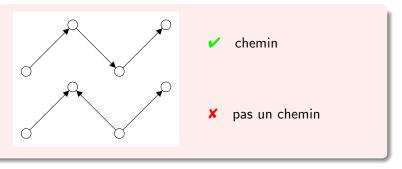
• si $d^+(u) = 0$ alors u est un **puits**

[sink]

$$\sum_{i \in V} d^{-}(i) = \sum_{i \in V} d^{+}(i) = |A|$$

Chemin: suite de sommets $(x_0, x_1...x_k)$ où $x_ix_{i+1} \in A$

- x_0x_k -chemin
- **longueur d'un chemin** = nombre d'arcs = k
- un chemin est orienté



Circuit : Chemin dont les deux extrémités sont le même sommet

 $x \rightsquigarrow y$: il existe un chemin de $x \grave{a} y$

La relation → n'est pas symétrique

$$\exists x, y \in V \text{ tels que } x \rightsquigarrow y \text{ et } y \rightsquigarrow x \\ \Leftrightarrow$$

G contient un circuit

Un graphe est **fortement connexe** si et seulement s'il existe un chemin entre chaque paire de sommets : $\forall x, y \in V, x \leadsto y$

Graphe orienté pondéré

Graphe orienté pondéré G = (V, A, w):

- graphe orienté G = (V, A)
- muni d'une fonction de poids sur les arcs : $w: A \to \mathbb{R}$ [weighed directed graph]

Longueur d'un chemin : somme des poids des arcs du chemin

Plan

1 Graphes orientés

2 Plus court chemin

3 DAG : l'algorithme de Bellman

4 Poids positifs : l'algorithme de Dijkstra

Plus courts chemins

Les problèmes de plus courts chemins

$$G=(V,A,w)$$

(P1) Plus courts chemins entre deux sommets donnés

Soient s et t deux sommets de G. Trouver un chemin de longueur minimum entre s et t dans G.

(P2) Plus courts chemins à partir d'un sommet

Soit s un sommet de G. Pour tous les sommets v de G, trouver un chemin de longueur minimum entre s et v dans G.

(P3) Plus court chemin entre chaque paire de sommets ²

Pour chaque paire de sommets u, v de G, trouver un chemin de longueur minimum entre u et v dans G.

Plus courts chemins

(P2) permet de résoudre (P1) et (P3)

Pour (P3), voir l'algorithme de Floyd³

Plus court chemin

Distance entre s et t:

- plus petite longueur d'un st-chemin
- d(s,t)

longueur d'un plus court chemin = distance entre les extrémités

Plus courts chemins

Les problèmes de plus courts chemins (reformulation) 4 G = (V, A, w)

(P1) Plus courts chemins entre deux sommets donnés

Trouver la distance entre s et t dans G : d(s,t).

(P2) Plus courts chemins à partir d'un sommet

Trouver la distance entre s et tous les sommets de G : d(s, v), $\forall v \in V$.

(P3) Plus court chemin entre chaque paire de sommets

Trouver la distance entre chaque paire de sommets de G: d(u, v), $\forall u, v \in V$.

^{4. &}quot;Le chemin le plus court d'un point à un autre est la ligne droite, à condition que les deux points soient bien en face l'un de l'autre." Pierre Dac

Plus courts chemins

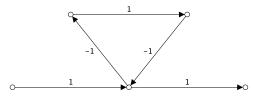
Y a-t-il toujours un plus court chemin?

Donnez des exemples de graphes pour lesquels, il n'y a pas de plus court chemin entre deux sommets donnés.

Par convention, lorsqu'il n'y a pas de st-chemin, $d(s,t)=+\infty$

S'il existe un *st*-chemin, alors, il existe un plus court *st*-chemin élémentaire

Circuit absorbant : circuit de longueur strictement négative



Problème des plus courts chemins bien défini si

- soit on cherche un chemin élémentaire
- soit les poids sont positifs
- soit le graphe ne contient pas de circuit

(P2) Plus courts chemins à partir d'un sommet

Trouver la distance entre s et tous les sommets de G.

Plus courts chemins

Principe de sous-optimalité

Dans un graphe orienté pondéré G = (V, A, w), soit P un plus court chemin de s vers x. Alors, en notant x' le prédécesseur de x dans ce chemin, le sous-chemin de P qui va de s à x', noté P[s, x']est un plus court chemin de s vers x'.

- Soit Q un sx'-chemin
- Q suivi de x'x est un sx-chemin.
- Puisque P est un plus court sx-chemin, w(P) = w(P[s, x']) + w(xx') < w(Q) + w(xx')
- d'où $w(P[s,x']) \leq w(Q)$.
- donc P[s, x'] est un plus court (s, x')-chemin.

Plus courts chemins

Principe de sous-optimalité

- Plus généralement : les sous-chemins des plus courts chemins sont des plus courts chemins
- Conséquence : structure d'arborescence (arbre enraciné) des plus courts chemins

Plus courts chemins : Algorithmes

Intuition de l'algorithme

- On maintient des distances provisoires, $\lambda(v)$ (poids d'un chemin de s à v trouvé à un certain stade de l'exécution de l'algorithme)
 - et une arborescence π décrivant ces chemins
- lorsque $\lambda(u) + w(uv) < \lambda(v)$ pour un arc uv, alors on a trouvé un meilleur chemin jusqu'à v et donc on met à jour $\lambda(v)$ et π

Plus courts chemins: Algorithmes

- π n'est modifié que s'il y a une amélioration stricte, jamais pour changer et trouver un autre chemin de même poids
- à tout moment dans l'algorithme, $\lambda(v)$ est la longueur d'un sv-chemin existant

 $\lambda(v) \ge d(s, v)$ pour tout sommet v.

Plus courts chemins dans un graphe non pondéré

Poids unitaires: w(a) = 1 $\forall a \in A$

- L'algorithme BFS trouve les plus courts chemins
- c'est le meilleur et le plus simple algorithme
- revoir cours sur cheminement pour la preuve (certificat)

DAG et Bellman

Poids unitaires

Plus courts chemins dans un graphe non pondéré **Certificat** d(s,t)=k

- $d(s,t) \le k$: exhiber un *st*-chemin de longueur k
- $d(s,t) \geq k$?

Algorithme 1 : BFS

Données : Un graphe orienté G = (V, A) et un sommet s de G **Résultat :**

- une arborescence de plus courts chemins d'origine s
- Les distances d(s, v) de s à tous les sommets v de G

$$\lambda(v) \leftarrow +\infty \quad \forall v \text{ sommet de } G \qquad F \text{ une file vide}$$
 Ajouter $s \ni F \qquad \lambda(s) \leftarrow 0$
$$\text{tant que } F \text{ est non vide faire}$$
 Défiler un sommet de $F: v$
$$\text{pour } Pour \text{ chaque sommet } w \text{ tel que } vw \in A \text{ faire}$$

$$\begin{vmatrix} \mathbf{si} \ \lambda(w) = +\infty \ \mathbf{alors} \\ & \text{Enfiler } w \text{ dans } F \\ & \pi(w) \leftarrow v \\ & \lambda(w) \leftarrow \lambda(v) + 1 \end{vmatrix}$$

Plus courts chemins dans un graphe non pondéré

Certificat $d(s, t) \ge k$

- Si S est une st-coupe alors chaque chemin de s à t contient au moins une arête sortante de S ($uv \in A$ avec $u \in S$ et $v \notin S$)
- Si on a une famille de k st-coupes dont les ensembles d'arêtes sortantes sont disjointes deux-à-deux, alors, $d(s,t) \ge k$
- BFS fournit une telle famille :

$$S_i = \{ v \in V / \lambda(v) \le i \} \text{ pour } i = 0, 1...k - 1$$

- st-coupes : $\lambda(s) = 0$ donc $s \in S_i$, $\lambda(t) \ge k$ donc $t \notin S_i$,
- disjointes : Si $uv \in A$ alors $\lambda(v) \le \lambda(u) + 1$

Généralisation

- Idée pour encoder un poids entier positif *p* : subdiviser un arc en *p* arcs (bonne idée?)
- Idée pour encoder un poids négatif : personne ne l'a trouvée
- \Rightarrow Algorithmes adaptés

Plan

Graphes orientés

2 Plus court chemin

- 3 DAG : l'algorithme de Bellman
- 4 Poids positifs : l'algorithme de Dijkstra

Graphe sans circuit

Graphe sans circuit

- Directed Acyclic Graph ou DAG
- Utilisé en programmation dynamique (états associés à une formule de récurrence)

Décrivez un graphe qui n'a ni source, ni puits.

Un DAG a toujours une source et un puits 5

preuve? (algorithmique, par contre-exemple maximal)

Graphe sans circuit

Propriété

Un graphe est sans circuit si et seulement si il admet un ordre topologique.

- Un ordre $v_1 = s, ..., v_n$ des sommets est topologique si tous les arcs sont de la forme $v_i v_j$ avec i < j.
- l'algorithme DFS permet d'obtenir un ordre topologique en temps linéaire. (Fournier, page 216)
- autre algorithme?

Algorithme de Bellman

Algorithme 2: Plus court chemin dans un DAG

Données : un graphe orienté valué G sans circuit et un sommet s **Résultat :** une arborescence de plus courts chemins d'origine s

Soit $v_1, v_2 \ldots, v_n$ un ordre topologique des sommets de GPour tout sommet $v, d(v) \leftarrow \infty$ $d(s) \leftarrow 0$ **pour** k = 1 à n faire

Pour chaque sommet
$$v$$
 tel que $v_k v \in A$
si $d(v) > d(v_k) + w(v_k v)$ alors

$$d(v) \leftarrow d(v_k) + w(v_k v)$$

$$\pi(v) \leftarrow v_k$$

Algorithme de Bellman

Extensions

- Plus long chemin : chemin orienté dont le poids est maximum : opposé des poids.
- Plus sûrs chemins : logarithme des poids.

cf feuille d'exercice

Plan

- 1 Graphes orientés
- 2 Plus court chemin

- 3 DAG : l'algorithme de Bellman
- 4 Poids positifs : l'algorithme de Dijkstra

goritimic de Dijkstra

Algorithme de Dijkstra

- Graphe avec des poids positifs
- garantit qu'il n'y a pas de circuit négatif

Algorithme de Dijkstra : idées

À chaque étape :

- $V = S \cup V \setminus S$
- Si $v \in S$, $\lambda(v) = d(s, v)$
- Si $v \notin S$, $\lambda(v) \geq d(s, v)$ $\lambda(v) = \text{longueur d'un plus court } sv\text{-chemin qui n'utilise que des sommets de } S$.
- Le sommet suivant t qui rentre dans S : valeur de λ minimale.
- Puis mise à jour des voisins de t

Algorithme de Dijkstra

Dijkstra(s)

Données : Un graphe G = (V, A, w) avec des poids positifs et un sommet s de G

Résultat : Les distances de s à tous les sommets de G

pour v sommet de G faire

$$\lfloor \lambda(v) \leftarrow \infty$$

$$S \leftarrow \emptyset \quad \lambda(s) \leftarrow 0$$

tant que $S \neq V$ faire

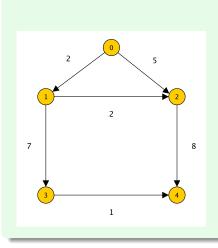
 $t \leftarrow \text{un sommet de } V \setminus S \text{ tel que } \lambda(t) \text{ soit minimum } S \leftarrow S \cup S \cup S$

$$S \leftarrow S \cup \{t\}$$

tant que il existe $v \notin S$ avec $tv \in A$ faire

retourner λ

Algorithme de Dijkstra



$\mathbf{valeurs}\ \mathbf{de}\ \lambda$				s = 0	
	0	1	2	3	4
	0	∞	∞	∞	∞
	0	2	5	∞	∞
	0	2	4	9	∞
	0	2	4	9	12
	0	2	4	9	10

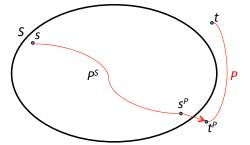
Algorithme de Dijkstra

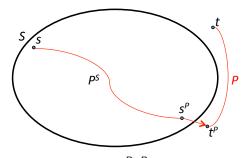
- 1 tout s'exécute correctement
- en un nombre fini d'étapes
 - ullet $S\subset V$ et à chaque étape |S| augmente de 1
- en cas d'arrêt, on obtient l'objet souhaité
 - A démontrer : $\lambda(v) = d(s,v)$ pour tout $v \in S$

- Preuve par récurrence que $\lambda(v) = d(s, v)$ pour tout $v \in S$
 - Vrai pour s (trivial)
 - On suppose que c'est vrai à l'itération k-1.
 - On démontre que la propriété est maintenue à l'itération suivante
 - c'est-à-dire, $\lambda(t)=d(s,t)$ lorsque t est ajouté dans S

Juste avant l'ajout de t dans S,

- soit P un chemin quelconque de s à t
- Soit t^P le premier sommet de P non dans S (existe car $s \in S$ et $t \notin S$)
- Soit s^P le prédécesseur de t^P dans P
- Soit P^S le sous chemin de P de s à s^P





$$w(P) \geq w(P^s) + w(s^P t^P)$$

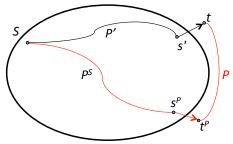
$$P^{S}$$
 plus l'arc $s^{P}t^{P}$ sous chemin de $P \geq \lambda(s^{P}) + w(s^{P}t^{P})$

$$\lambda(s^P) = d(s, s^P)$$
 par l'hypothèse de récurrence $\geq \lambda(t^P)$

mis à jour lorsque l'arc $s^P t^P$ a été vu $\geq \lambda(t)$

choix du λ minimum hors de S

Il faut encore montrer que $\lambda(t) \geq d(s,t)$



- $\exists s' \in S$ tel que $\lambda(t) = \lambda(s') + w(s't)$
- Soit P' un plus court chemin de s à s' de longueur $\lambda(s')$ (par hypothèse de récurrence)
- $\lambda(t)$ est la longueur du chemin composé de P' augmentée de w(s't). Donc $\lambda(t) \geq d(s,t)$

Donc lorsque t est ajouté à S, on a $\lambda(t) = d(s,t)$

Remarques

- Si on tombe dans l'algo sur t avec $\lambda(t) = \infty$ est-ce que ça vaut le coup de continuer?
- extension graphe non orienté avec longueurs positives

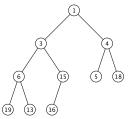
Donnez un exemple de graphe sans circuit absorbant où l'algorithme de Dijkstra ne donne pas les plus courts chemins.

Comment coder efficacement l'algorithme de Dijkstra?

- = comment enlever rapidement l'élément de λ minimum?
- \Rightarrow Structure de données : **tas binaire** [Binary heap]
 - permet d'encoder des ensembles, d'ajouter des éléments, de retirer l'élément de plus petite étiquette...
 - ex : heap sort

Tas binaire : arbre enraciné qui vérifie les propriétés suivantes

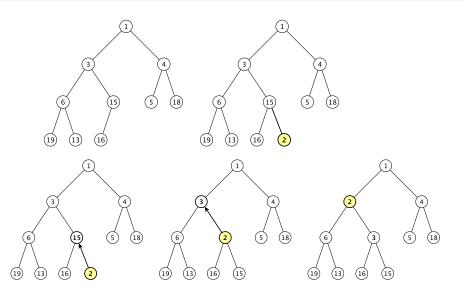
- c'est un arbre binaire parfait :
 - Les nœud du dernier niveau n'ont pas de fils
 - Les nœud de l'avant dernier niveau ont au plus deux fils
 - Tous les autres nœud ont deux fils
 - si le dernier niveau n'est pas totalement rempli, alors il est rempli de gauche à droite
- c'est un tas :
 - chaque nœud contient une étiquette
 - l'étiquette du père est plus petite que les étiquettes de ses fils



Tas binaires : opérations

- ajouter un élément
 - L'élément s est d'abord rajouté en dernière position au tas.
 Puis, tant qu'il n'est pas la racine et qu'il est plus petit que son père, on échange les positions entre s et son père.

Tas binaire : ajouter



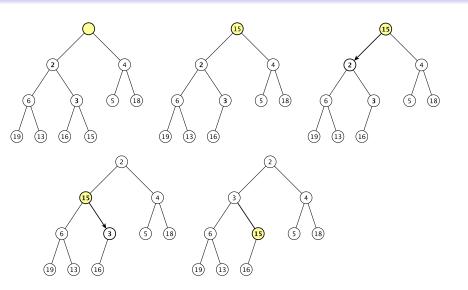
Tas binaires : opérations

- ajouter un élément
 - L'élément s est d'abord rajouté en dernière position au tas.
 Puis, tant qu'il n'est pas la racine et qu'il est plus petit que son père, on échange les positions entre s et son père.

retirer

- renvoie le sommet racine du tas, qui correspond au sommet qui a la plus petite valeur.
- enlève ce sommet du tas
- met le tas à jour : met à la racine le dernier sommet du tas puis tant que ce sommet a des fils et qu'il est strictement supérieur à ses fils, échanger sa position avec celle du plus petit de ses fils.

Tas binaire: retirer



Tas binaires : opérations

 diminuer l'étiquette d'un nœud
 Il faut faire attention de maintenir la structure de tas en faisant éventuellement remonter le nœud qui a été modifié dans l'arbre comme lorsqu'on ajoute un sommet.

Montrer que les trois opérations maintiennent la structure de tas binaire.

Tas binaires : complexité

Le nombre d'opérations de chaque fonction est borné par la hauteur de l'arbre.

Arbre binaire complet \Rightarrow profondeur \leq logarithme du nombre de nœuds.

Chaque opération sur le tas binaire a donc une complexité $O(\log n)$ L'algorithme de Dijkstra a donc une complexité $O((|V|+|E|)\log |V|)$

- pas de circuit : Algorithme de Bellman
- couts positifs : Algorithmes de Dijkstra
- Algorithme de Bellman Ford : caractérisation des graphes orientés pondérés sans circuit absorbant.