Nadia Brauner

Nadia.Brauner@imag.fr

- Modélisation à l'aide des graphes
- 2 Notions de base sur les graphes
- O Degrés
- 4 Représentations des graphes
- Quelques graphes célèbres

•0000000000

- Modélisation à l'aide des graphes
- 2 Notions de base sur les graphes
- 3 Degrés
- Représentations des graphes
- Quelques graphes célèbres

0000000000

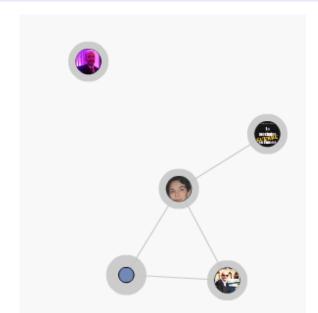
L'utilisation judicieuse d'un graphe peut rendre certains problèmes concrets accessibles à un raisonnement mathématique

Modéliser avec des graphes

- une ensemble d'objets homogènes (étudiants, employés, machines, usines, carrefours...)
- les liens entre ces objets
 (est plus habile, est dans le même atelier, collabore avec, est relié par une route...)

0000000000

Des graphes de tous les jours : réseau Facebook



0000000000

Des graphes de tous les jours : réseau Linkedin

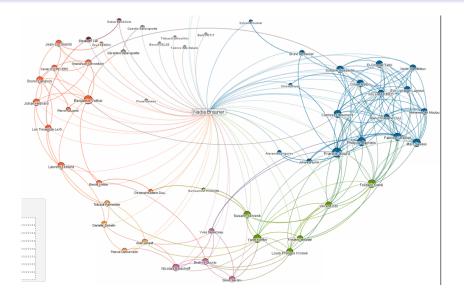
Your Network of Trusted Professionals

You are at the center of your network. Your connections can introduce you to 1,083,000+ professionals — here's how your network breaks down:

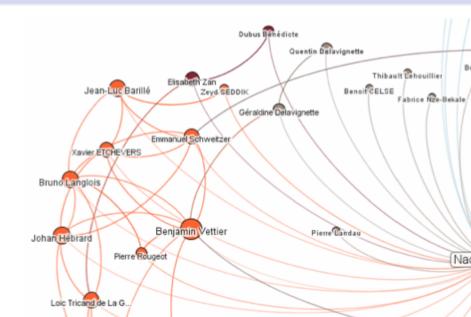
Your Connections Your trusted friends and colleagues	57
Two degrees away Friends of friends; each connected to one of your connections	10,400+
Three degrees away Reach these users through a friend and one of their friends	1,072,500+
Total users you can contact through an Introduction	1,083,000+
3,218 new people in your network since January 23	

00000000000

Des graphes de tous les jours : réseau Linkedin



Des graphes de tous les jours : réseau Linkedin



Des graphes de tous les jours : transports en communs

00000000000

ouclisation

Des graphes de la vie courante

- Internet (promenade entre pages web)
- Règles d'un jeu fini (échec, dames...)
- Plans des lignes de transport en commun
- Réseau des amis sur Facebook

D'autres graphes

- Molécules chimiques
- Circuits imprimés
- Factorisations d'un nombre

000000000000

viodelisation

Décrire

- les sommets
- les arêtes, arcs
- la pondération des arcs
- la question associée

Le GPS

- les sommets : carrefours
- les arcs : rues orientées
- la pondération des arcs : longueurs
- la question associée : plus court chemin entre deux sommets

Modélisation

Quelques problèmes concrets

- Cheminement
 - GPS
 - Organisation de projet
 - Procédé de fabrication le plus sûr
- Compatibilité
 - Organisation de sessions d'examens
 - Cuisson de lots dans des fours
- Recherche multicritère de solution dominantes
- Affectation de ressources sur un projet
- Flots
 - Acheminement de pétrole via un réseau d'oléoducs,
 - Fluidification du trafic automobile dans une ville

0000000000

Quelques problèmes concrets

- Connexité
 - Accessibilité dans un réseau de transport
 - Réseau souterrain du campagnol terrestre 2-connexe
 - Fiabilité dans les réseaux

- Notions de base sur les graphes

Graphe fini : G = (V, E) où

- V est un ensemble fini
- E est un ensemble de couples non ordonnés d'éléments de V

Cycle à 3 sommets :
$$V = \{1, 2, 3\}$$
 $E = \{12, 23, 13\}$ ¹

couple non ordonné : $12 \equiv 21$

^{1.} Formellement E est inclus dans l'ensemble des parties à deux éléments de V et uv devrait s'écrire $\{u, v\}$. Donc $uu \notin E$

Terminologie

• G : Graphe

[Graph]

ullet V : ensemble des sommets du graphe

[Vertices]

• E : ensemble des arêtes du graphe

[Edges]

• Ordre du graphe = nb de sommets = Card(V) = |V|

$$\bullet$$
 $n = |V|$

$$m = |E|$$

Représentation graphique

- V : sommets \rightarrow points
- E : arêtes → traits (reliant les points)

Représentation graphique du cycle à 3 sommets

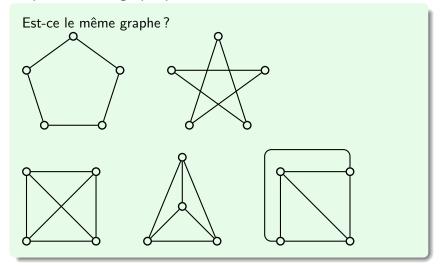
Représentation graphique

Dessiner les graphes suivants :

- Les sommets sont les faces d'un cube, deux sommets sont reliés si les faces correspondantes ont une arête du cube en commun.
- Les sommets du graphe sont tous les sous ensembles à deux éléments de {1, 2, 3, 4 } deux sommets sont reliés si leur intersection est non vide.
- Graphe associé à la situation : Trois pays envoient chacun à une conférence deux espions qui ne se connaissent pas, chaque espion doit entrer en contact avec tous les espions des autres pays.

(IREM d'Aix-Marseille)

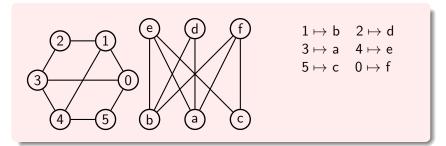
Représentation graphique



G est **isomorphe** à H:

- \exists une bijection $f: V(G) \rightarrow V(H)$
- $\forall x, y \in V(G)$, on a $xy \in E(G) \Leftrightarrow f(x)f(y) \in E(H)$

Bijection entre les sommets qui préserve les arêtes ²

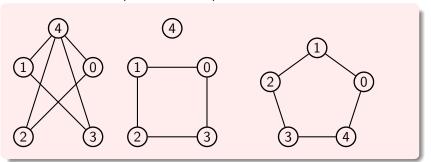


2. bien sur, G = (V(G), E(G)). On avait omit jusque là car il n'y avait pas d'ambiguité.

\overline{G} est le **complémentaire** de G :

- même ensemble de sommets
- les arêtes de \overline{G} sont les non-arêtes de G : $uv \in E(G) \Leftrightarrow uv \notin E(\overline{G})$

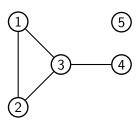
Un graphe est **auto-complémentaire** s'il est isomorphe à son complémentaire



Représentation graphique

Graphviz : logiciel de représentation de graphes

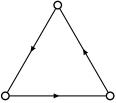
```
graph G
 node [shape=circle
    fontname = "Arial"];
 5
```



Variantes

• **Boucle** : arêtes du type $ii \in E$

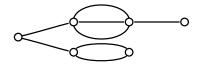
• **Graphe orienté** : E contient des couples ordonnés $(12 \neq 21)$



$$E = \{arcs\}$$

Variantes

• Multigraphe : E = collection (chaque arête peut apparaître plusieurs fois)

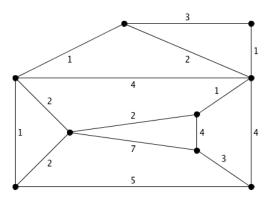


sinon, graphe simple

ici, **graphe** = graphe simple, sans boucle, non orienté³

Variantes

• Graphes étiquetés (labellisés, pondérés, valués) : informations/valeurs sur les sommets et/ou sur les arêtes



Plan

- O Degrés

Modélisation

Dans un groupe de vingt enfants, est-il possible que sept d'entre eux aient chacun exactement trois amis, neuf d'entre eux en aient exactement quatre, et quatre d'entre eux exactement cing?

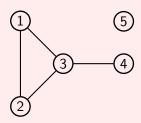
Degrés 0000000

- i et j sont les **extrémités** de $ij \in E$
- e est incidente à i si i est extrémité de e
- i et j sont **voisins** ou adjacents si $ij \in E$
- N(u), le **voisinage** du sommet u est ensemble des voisins de u

Degré d'un sommet d(v) : nombre d'arêtes incidentes à vd(v) = |N(v)|

Degrés

00000000



$$d(1) = 2 = d(2), d(3) = 3, d(4) = 1, d(5) = 0$$

• v est **isolé** si d(v) = 0

Soit G = (V, E) avec $V = \{a, b, c, d\}$ et $E = \{ab, ac, ad, bd\}$.

Degrés

00000000

- Quel est l'ordre du graphe?
- Quels sont les sommets adjacents à d?
- Combien y-a-t-il d'arêtes incidentes à c?
- Quel est le degré de *d*?

Est-ce qu'il existe un graphe simple avec la séquence de degrés suivante? s'il existe, trouver un tel graphe. Sinon, expliquer pourquoi.

(a) (1; 2; 2; 4; 5; 5)

(e) (2; 2; 2; 3; 3; 3)

(b) (2; 2; 2; 2; 2; 2)

(f) (0: 2: 2: 3: 4: 5)

(c) (1; 1; 1; 1; 1; 1)

(g) (5; 5; 5; 5; 2; 2)

(d) (3; 3; 3; 3; 5)

Théorème

Soit G = (V, E) un graphe. Alors, $\sum_{v \in V} d(v) = 2|E|$.

Degrés 00000000

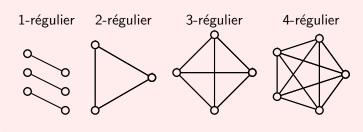
chaque arête uv contribue à

- 1 dans le degré de u
- 1 dans le degré de v

Corollaire

Le nombre de sommets de degré impair est pair.

• G est K-régulier si $d(v) = K \quad \forall v \in V$



Graphe complet d'ordre K+1:

- ullet graphe K-régulier à K+1 sommets
- noté K_{K+1}

Existe-t-il des graphes réguliers autres que les graphes complets?

Degrés

Dessiner K_n pour n = 1, 2, 3, 4, 5.

Combien K_n a-t-il d'arêtes?

Le conseil municipal d'une ville comprend 7 commissions, qui obéissent aux règles suivantes :

Règle 1 : tout conseiller municipal fait partie de 2 commissions exactement

Règle 2 : deux commissions quelconques ont exactement un conseiller en commun;

Combien y a-t-il de membres dans le conseil municipal?

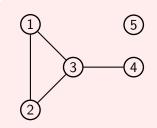
(IREM d'Aix-Marseille)

Plan

- 4 Représentations des graphes

Matrice d'adjacence de G : matrice M carrée $n \times n$ binaire

$$M_{ij} = \left\{ \begin{array}{ll} 1 & \text{si } ij \in E \\ 0 & \text{sinon} \end{array} \right.$$

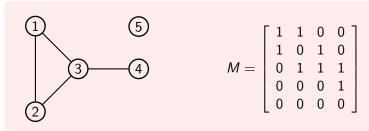


$$M = \left[\begin{array}{ccccc} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right]$$

- M est symétrique ($M_{ii} = M_{ii} \quad \forall ij$)
- diagonale = 0

Matrice d'incidence de G : matrice M binaire $n \times m$

$$M_{ie} = \left\{ egin{array}{ll} 1 & ext{si le sommet } i ext{ est extrémité de } e \ 0 & ext{sinon} \end{array}
ight.$$



• Exactement deux 1 dans chaque colonne

Graphes orientés

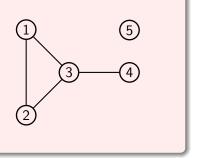
- Mêmes définition mais on doit distinguer ij de ji
- Utiliser ±1
- Matrice d'incidence

$$M_{ia} = \left\{ egin{array}{ll} 1 & ext{si arc } a ext{ sortant de } i \ -1 & ext{si arc } a ext{ entrant dans } i \ 0 & ext{sinon} \end{array}
ight.$$

Représentation machine des graphes

• **Liste d'adjacence** : tableau de *n* listes chaînées liste dans la case i =liste des voisins de i

- 1: [2,3]
- 2 : [1,3]
- 3 : [1,2,4]
- 4: [3]
- 5 : []



Il existe d'autres structures de données pour représenter les graphes

Représentation machine des graphes

Dans une matrice d'incidence, que représente :

- la somme des coefficients d'une ligne?
- la somme de tous les coefficients de la matrice?

Dans une matrice d'adjacence, que représente :

- la somme des coefficients de la colonne *j*?
- la somme des coefficients de la ligne *i* ?
- la somme de tous les coefficients de la matrice?

Quel est le nombre maximum d'arêtes si on a *n* sommets?

Représentation machine des graphes

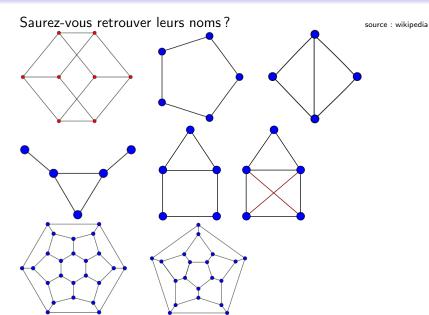
Comparaison

-	matrice	matrice	liste
	adjacence	incidence	adjacence
mémoire	n^2	$n \times m$	n+4m
peu d'arêtes	_	++	++
bcp d'arêtes	++	_	-
<i>i</i> et <i>j</i> voisins?	1	m	degré i
i isolé?	n	m	1
nb d'arêtes?	n^2	1	n^2

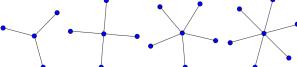
Plan

- Modélisation à l'aide des graphes
- 2 Notions de base sur les graphe
- 3 Degrés
- Représentations des graphes
- 5 Quelques graphes célèbres

Quelques graphes célèbres



Saurez-vous retrouver leurs noms?



source : wikipedia

source : Wolfram MathWorld

Quelques graphes célèbres

Saurez-vous retrouver leurs noms?

Quelques graphes célèbres

Saurez-vous retrouver leurs noms?

