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Logistic regression for binary responses

Logistic regression deals with the statistical analysis of binary 0 or 1 data.

Example: Study on diabetes among 768 females Pima Indians in
Phoenix, USA.

— investigates the effect of risk factors (or covariates) on the fact of
being diabetic (1) or not (0):

@ age of the woman
@ body mass index (BMI = weight[kg]/height[m]?)
Q ...



Binary response data: an example

Dependence of diabetic status on body mass index (BMI)
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It seems that the number of 1's tends to increase relative to the number
of 0's with increasing BMI. Thus BMI seems to be a positiver risk factor
for getting diabete.



Logistic regression: the mathematical formulation

The logistic regression model is appropriate for analyzing such data:

exp(fo + F1.Xi1 + B2Xi2)
P(Y: = 1| X1, Xi2) =
( [Xin, Xiz) 1+ exp(Bo + B1Xi1 + 2Xi2)

with X;; = age, Xj» = BMI, for the i-th woman.
The combination (g + B1 X1 + (2Xi» is called the linear predictor.
An alternative way of writing this model is as:

o P(Y; = 1|Xi1, Xi2)
s\1- P(Y; = 1| X1, Xi2)

) = Bo + B1Xin + B2 Xio

logit(P(Yi=1|Xi1,X2))



The logistic curve: examples
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Statistical analysis of binary data

Objectives: From a sample of n individuals (Y}, Xj1,..., Xi2):
@ estimate the parameters 3;,
@ test hypothesis about the 3;, such as Hy : 8; =0 vs Hy : 3; #0,
© predict a particular probability m; = P(Y; = 1| X1, Xj2) as:

s exp(ao + BiXi + BQXiz)
= ~ —~ —
1+ exp(Bo + S1Xi1 + B2Xi2)




Maximum likelihood estimation

[ is estimated by the value B,, which maximizes the likelihood

La(8) = [T (Y = 11Xi1, X2)] ™ [B(Y; = 0| X1, Xi2)]' ™
i=1

This estimator has some nice properties:
@ [, "is closer and closer” to the unknown /3,

@ /3, is distributed approximately as a normal law = confidence
intervals, p-values.



Estimation of the logistic curve

Estimation of P(Y=1|X) for n=50 (blue), 100 (red), 1000 (green)
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The problem of immunes

The observed data
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Estimation of the logistic curve with immunes

Estimation of P(Y=1]X) with immunes for n=50
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The proposed estimation procedure

With immunity, we are in fact led to estimate the 3; in the model:

_ . - Q. — __exp(Bot+PiXin+B2Xi2)
P(YI = 1‘X:1a Xi2, Si = 1) - 1+exp(lf)(3o+lﬁ1)l<i1+2ﬁ2)2<i2)

P(Y; = 1|Xi1, Xi2,Si = 0) =0

where S; = 0 if the patient is immune and S; = 1 otherwise (susceptible).

This problem falls within the general context of zero-inflated regression:

@ zero-inflated Poisson: Lambert (1992), Dietz and Bohning (2000),
Lam (2006), Xiang et al. (2007),. ..

@ zero-inflated binomial: Hall (2000),. ..

@ zero-inflated proportional odds: Kelley and Anderson (2008)



The proposed estimation procedure

Estimation is still possible if we can model the probability of being cured,
for example, by a logistic regression model:

exp(bo + 01Zi1 + 022Z;2)
P i = 1 Zi 7Zi =
(S |Zi1, Zi2) 1+ exp(bo + 61211 + 62Z5)

since then:
! . / .
eﬁ Xi+0'Z;

(14 e %) (1 + e?%)

P(Y = 1|X;,Z;) =

and (3 and @ are estimated by maximizing the likelihood

n B XHOT Y XA
Ln )0 = ’ ’ - 7 7
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The identifiability issue

Some important regularity conditions:

@ The covariates are bounded. The Xj1, Xio, ... are linearly
independent. The Zj1, Zj, ... are linearly independent

— "classical conditions” for standard logistic regression.

@ There exists one continous covariate V' which is in X; but not in Z;.
Moreover, at the model-building stage, it is known that V is in X;.



Parameter exchangeability

Recall that

n

L(8,0) =1

i=1

X0 Yi QX0 1=
1 _
1+ %) 1+ e77) 1+ %) 1+ e77)

If X; = Z; (contain the same covariates) then: L,(3,0) = L,(0,0) =

n

II

i=1

e(9+ﬁ)'X,- K e(9+/3)/X,‘ =Y
/ U 1 - 7 —
(1+ eX)(1 + %) (1+ &%) (1+ e7X)

For example, 5 =(1,3) and 8 = (2,3.5). (8 and 6 are exchangeable and
cannot be identified from the data.

= the model is non-identifiable. No convergent estimation procedure can
exist.

Assuming there is one covariate in X; which is not in Z; = X; # Z;.



Linear predictors (l.p.) exchangeability

The same likelihood value

Y; 1-Y;
n B'Xi+0'Z; ' B'Xi+0'Z; '
Ln(ﬂa 0) = H e/xv 0'Z: - elx_ 0'Z:
P (14 eBXi)(1 + %) (14 eBXi)(1 + %)
can arise from the following two models:
B8'X; 0'z;
P(Y; =1X;, 5 =1) = *ox; P(Y; = 11X, 5 = 1) = %
0'2; B8'X;

The l.p. §’X; and 0'Z; are exchangeable and the sub-models for Y; and
S; cannot be identified from the data = the model is non-identifiable.

Knowing, prior to model fitting, which l.p. the covariate V is attached to
will force each |.p. to be attached to the correct sub-model.



|dentifiability of finite mixture of logistic regressions

The condition that V is continuous should be understood with respect to
the problem of:

Mixture of c logistic regressions (Follmann and Lambert, 1991)
with constant mixing probabilities.

The model is identifiable if the number of distinct covariate combinations
values is "sufficiently large”. Specifically, FL show that ¢ has to be
constrained by

c<VN+2-1 J

with N the number of distinct observed values of the covariate vector.

— a single 0/1 covariate will identify only one component,

< a mixture of two Bernoulli distributions is identifiable if the number of
unique combinations of the covariate vector is at least 7.
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A numerical investigation of identifiability

We simulate data from the model defined by

log (%) = b1+ BoXio + B3Zio + PaZis + BsZia if S =1
P(Y = 1/X;, 5;) = 0 if S =0

and

P(S=1]Zi)) \ _
log <1IP>(5‘_12,)) =01+ 02Zip + 0323 + 0474,

where Xj» ~ N(0,1), Zi» ~ N(1,1), and Z;3 and Zy are indicator
variables built from a categorical variable with 3 categories.



A numerical investigation of identifiability (ctd)

Results for 3 = (—1.7,—2,-3.4,5,.3) and 6 = (.71,1,2, —3) (25% of immunes).

Bn 9[1
n Bi.n B2.n B3.n Ba.n Bs.n 01.n 92.n 03.n O4.n
100 -1.709 -2.513 -3.843 5.540 0.301 0.824 0.976 2.558 -3.576
(1.819)  (1.015)  (1.667) (2503) (3.132) (2319)  (3.073)  (2.691)  (2.941)
[1.348]  [0715]  [1.204]  [1.845]  [2.296] [1838]  [2118]  [2.084]  [2.376]
500 -1.695 -2.093 -3.286 4.954 0.301 0.761 0.988 2.316 -2.745
(0999)  (0543)  (1.063)  (1.265)  (1.848) (1203)  (1566)  (1.485)  (2.489)
[0.741]  [0.395]  [0.760]  [0.953]  [1.481] [0.986]  [1.060]  [1.135]  [1.830]

Note: (-): root mean square error. [-]: mean absolute error

. The percentage of

infected among the susceptibles is 30%. All results are based on 1000 replicates.



A numerical investigation of identifiability (ctd)

Results for 8 = (—1.7,—2,—-3.4,5,.3) and 6 = (—.3,—1,2.1,1) (50% of immunes).

Bn 6n
n Bi,n B2,n B3.n Ba,n Bs.n 01,n 92.n 03,n 2N
100  -1.716 -2.641 -3.816 5.866 0.302 -0.279 -1.537 2,616 1.352
(2.455)  (1.491)  (1.866)  (3.121)  (3.133) (1.942)  (1.909)  (2.749)  (3.155)
[1.830] [1.127] [1.467] [2.531] [2.296] [1.484] [1.334] [2.143] [2.469]
500 -1.714 -2.281 -3.764 5.295 0.301 -0.313 -1.317 2.364 1.211
(1.341)  (0.794)  (1.257)  (1.929)  (1.907) (1.071)  (1.222)  (1.689)  (1.881)
[1.053] [0.597] [0.951] [1.554] [1.431] [0.858] [0.760] [1.263] [1.474]




A numerical investigation of identifiability (ctd)

Results for 3 = (—1.7,—2,—-3.4,5,.3) and 0 = (.4, —1,

—.6,—2) (75% of immunes).

Bn en
n Bi.n B2.n B3.n Ba.n Bs.n 01.n 92.n 03.n O4.n
100 -1.581 -2.792 -3.847 5.502 0.248 0.469 -1.571 -0.501 -1.846
(2.951)  (2412) (3.687) (5.102)  (3.214) (2256)  (2.042)  (2.356)  (3.517)
[2157]  [1.897]  [2.912]  [4.434]  [2.488] [1.803]  [1.287] [1.896]  [2.834]
500 -1.530 -2.435 -3.714 5.331 0.292 0.464 -1.323 -0.562 -1.901
(1.446)  (1.466)  (1.934)  (3.221)  (2.110) (1335)  (0976)  (1.678)  (1.978)
[1.022]  [1.142] [1563]  [2.659]  [1.700] [1.076]  [0.611]  [1.307]  [1.509]




Simulation study: the normal approximation

We simulate data from the model defined by

P(Y=1|X.5) \ _ e
{ log (W) =01+ oXn ifS =1

P(Y = 1X;,5;) = 0 if S =0
and
P(S =1|Z)) B :
log (1—]P’(Sz1|2,)) =01 + 0,2,

where X,'2 NN(O, 1) and Z,'2 ~ N(l, 1)

The sample size is taken: n = 100,500, 1000, 1500 and the percentage of
immunes in the sample: 25%, 50%, and 75%.



Simulation results for 3 = (—.8,1)

percentage of immunes in the sample

0% 25% 50% 5%

n Bi.n Ba.n Bi.n Ba.n Bi.n Ba.n Bi.n B2.n
100 -0.834 1.064 -0.773 1.114 -0.787 1.137 -0.750 0.917
(0.258)  (0.301) (0.583)  (0.412) (0.825)  (0.603) (0.921)  (0.858)

[0.202]  [0.232] [0.465]  [0.324] [0.657]  [0.440] [0.784]  [0.568]

0.965 0.109 0.096 0.121

500 -0.807 1.012 -0.783 1.111 -0.788 1.129 -0.791 1.120
(0.107)  (0.125) (0.320)  (0.354) (0.428)  (0.389) (0.707)  (0.538)

[0.085]  [0.099] [0.264]  [0.227] [0.352]  [0.270] [0.603]  [0.407]

1 0.985 0.85 0.267

1000 -0.801 1.004 -0.794 1.058 -0.798 1.060 -0.797 1.108
(0.077)  (0.085) (0.241)  (0.202) (0.310)  (0.247) (0.683)  (0.482)

[0.062]  [0.068] [0.201]  [0.147] [0.253]  [0.178] [0.569]  [0.354]

1 1 1 0.567

1500 -0.805 1.003 -0.801 1.040 -0.799 1.040 -0.802 1.057
(0.061)  (0.074) (0.210)  (0.159) (0.277)  (0.191) (0.600)  (0.361)
[0.048]  [0.059] [0.176]  [0.119] [0.228]  [0.141] [0.493]  [0.276]

1 1 1 0.861

Note: (-): root mean square error. [-]: mean absolute error. For each % of immunes,
the % of infected among the susceptibles is 30%.



Histograms and Q-Q plots for [3’\2,,, (no immunes)
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Histograms and Q-Q plots for [3’\2,,, (25% of immunes)
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Histograms and Q-Q plots for [3’\2,,, (50% of immunes)
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Histograms and Q-Q plots for [3’\2,,, (75% of immunes)
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Simulation results for § = (—.8,0)

percentage of immunes in the sample

0% 25% 50% 75%
n Bi,n B2,n Bi,n B2,n Bi,n B2,n B1,n B2,n

100 -0.815 -0.001 -0.721 -0.007 -0.734 0.000 -0.746 -0.004
(0.224)  (0.229) (0.465)  (1.341) (0.800)  (2.109) (1.966)  (3.258)

[0.177]  [0.179] [0.377]  [0.762] [0.636]  [1.111] [1.516]  [1.715]

0.052 0.077 0.069 0.087

500 -0.801 -0.001 -0.748 0.007 -0.750 0.001 -0.775 -0.006
(0.097)  (0.099) (0.280)  (0.415) (0.520)  (0.469) (1.209)  (0.711)

[0.078]  [0.080] [0.241]  [0.231] [0.422]  [0.241] [1.007]  [0.363]

0.041 0.058 0.052 0.057

1000 -0.803 -0.001 -0.759 0.008 -0.763 0.005 -0.793 0.005
(0.067)  (0.066) (0221)  (0.237) (0.367)  (0.266) (1.154)  (0.312)

[0.053]  [0.053] [0.182]  [0.137] [0.209]  [0.140] [0.011]  [0.175]

0.042 0.045 0.037 0.048

1500 -0.801 0.000 -0.782 0.009 -0.784 0.003 -0.783 0.009
(0.053)  (0.054) (0.208)  (0.168) (0.328)  (0.212) (1.149)  (0.258)

[0.042]  [0.043] [0.178]  [0.099] [0.267]  [0.102] [0.901]  [0.144]

0.051 0.048 0.027 0.039
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Discussion and perspectives

@ Logistic regression with a cure fraction can be viewed as a
zero-inflated Bernoulli regression problem. The proposed model
extends the ones previously investigated in the domain.

@ Confidence bands for the probability of infection are under
investigation.

@ Robustness to misspecification of the model for the cure fraction.

@ Further generalization: random-effects logistic regression for
clustered data (family, treatment).



