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Logistic regression for binary responses

Logistic regression deals with the statistical analysis of binary 0 or 1 data.

Example: Study on diabetes among 768 females Pima Indians in
Phoenix, USA.

↪→ investigates the effect of risk factors (or covariates) on the fact of
being diabetic (1) or not (0):

1 age of the woman

2 body mass index (BMI = weight[kg]/height[m]2)

3 . . .



Binary response data: an example
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It seems that the number of 1’s tends to increase relative to the number
of 0’s with increasing BMI. Thus BMI seems to be a positiver risk factor
for getting diabete.



Logistic regression: the mathematical formulation

The logistic regression model is appropriate for analyzing such data:

P(Yi = 1|Xi1,Xi2) =
exp(β0 + β1Xi1 + β2Xi2)

1 + exp(β0 + β1Xi1 + β2Xi2)

with Xi1 = age, Xi2 = BMI, for the i-th woman.

The combination β0 + β1Xi1 + β2Xi2 is called the linear predictor.

An alternative way of writing this model is as:

log

(
P(Yi = 1|Xi1,Xi2)

1− P(Yi = 1|Xi1,Xi2)

)
︸ ︷︷ ︸

logit(P(Yi =1|Xi1,Xi2))

= β0 + β1Xi1 + β2Xi2



The logistic curve: examples
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Statistical analysis of binary data

Objectives: From a sample of n individuals (Yi ,Xi1, . . . ,Xi2):

1 estimate the parameters βj ,

2 test hypothesis about the βj , such as H0 : βj = 0 vs H1 : βj 6= 0,

3 predict a particular probability πi = P(Yi = 1|Xi1,Xi2) as:

π̂i =
exp(β̂0 + β̂1Xi1 + β̂2Xi2)

1 + exp(β̂0 + β̂1Xi1 + β̂2Xi2)



Maximum likelihood estimation

β is estimated by the value β̂n which maximizes the likelihood

Ln(β) =
n∏

i=1

[P(Yi = 1|Xi1,Xi2)]Yi [P(Yi = 0|Xi1,Xi2)]1−Yi

This estimator has some nice properties:

1 β̂n ”is closer and closer” to the unknown β,

2 β̂n is distributed approximately as a normal law ⇒ confidence
intervals, p-values.



Estimation of the logistic curve
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The problem of immunes
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Estimation of the logistic curve with immunes
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The proposed estimation procedure

With immunity, we are in fact led to estimate the βj in the model:

 P(Yi = 1|Xi1,Xi2,Si = 1) = exp(β0+β1Xi1+β2Xi2)
1+exp(β0+β1Xi1+β2Xi2)

P(Yi = 1|Xi1,Xi2,Si = 0) = 0

where Si = 0 if the patient is immune and Si = 1 otherwise (susceptible).

This problem falls within the general context of zero-inflated regression:

zero-inflated Poisson: Lambert (1992), Dietz and Bohning (2000),
Lam (2006), Xiang et al. (2007),. . .

zero-inflated binomial: Hall (2000),. . .

zero-inflated proportional odds: Kelley and Anderson (2008)



The proposed estimation procedure

Estimation is still possible if we can model the probability of being cured,
for example, by a logistic regression model:

P(Si = 1|Zi1,Zi2) =
exp(θ0 + θ1Zi1 + θ2Zi2)

1 + exp(θ0 + θ1Zi1 + θ2Zi2)

since then:

P(Y = 1|Xi ,Zi ) =
eβ

′Xi +θ
′Zi

(1 + eβ′Xi )(1 + eθ′Zi )

and β and θ are estimated by maximizing the likelihood

Ln(β, θ) =
n∏

i=1

[
eβ

′Xi +θ
′Zi

(1 + eβ′Xi )(1 + eθ′Zi )

]Yi
[

1− eβ
′Xi +θ

′Zi

(1 + eβ′Xi )(1 + eθ′Zi )

]1−Yi



The identifiability issue

Some important regularity conditions:

The covariates are bounded. The Xi1,Xi2, . . . are linearly
independent. The Zi1,Zi2, . . . are linearly independent

↪→ ”classical conditions” for standard logistic regression.

There exists one continous covariate V which is in Xi but not in Zi .
Moreover, at the model-building stage, it is known that V is in Xi .



Parameter exchangeability

Recall that

Ln(β, θ) =
n∏

i=1

[
eβ

′Xi +θ
′Zi

(1 + eβ′Xi )(1 + eθ′Zi )

]Yi
[

1− eβ
′Xi +θ

′Zi

(1 + eβ′Xi )(1 + eθ′Zi )

]1−Yi

If Xi = Zi (contain the same covariates) then: Ln(β, θ) = Ln(θ, β) =

n∏
i=1

[
e(θ+β)′Xi

(1 + eθ′Xi )(1 + eβ′Xi )

]Yi
[

1− e(θ+β)′Xi

(1 + eθ′Xi )(1 + eβ′Xi )

]1−Yi

For example, β = (1, 3) and θ = (2, 3.5). β and θ are exchangeable and
cannot be identified from the data.

⇒ the model is non-identifiable. No convergent estimation procedure can
exist.

Assuming there is one covariate in Xi which is not in Zi ⇒ Xi 6= Zi .



Linear predictors (l.p.) exchangeability

The same likelihood value

Ln(β, θ) =
n∏

i=1

[
eβ

′Xi +θ
′Zi

(1 + eβ′Xi )(1 + eθ′Zi )

]Yi
[

1− eβ
′Xi +θ

′Zi

(1 + eβ′Xi )(1 + eθ′Zi )

]1−Yi

can arise from the following two models: P(Yi = 1|Xi ,Si = 1) = eβ
′Xi

1+eβ
′Xi

P(Si = 1|Zi ) = eθ
′Zi

1+eθ
′Zi

 P(Yi = 1|Xi ,Si = 1) = eθ
′Zi

1+eθ
′Zi

P(Si = 1|Zi ) = eβ
′Xi

1+eβ
′Xi

The l.p. β′Xi and θ′Zi are exchangeable and the sub-models for Yi and
Si cannot be identified from the data ⇒ the model is non-identifiable.

Knowing, prior to model fitting, which l.p. the covariate V is attached to
will force each l.p. to be attached to the correct sub-model.



Identifiability of finite mixture of logistic regressions

The condition that V is continuous should be understood with respect to
the problem of:

Mixture of c logistic regressions (Follmann and Lambert, 1991)
with constant mixing probabilities.

The model is identifiable if the number of distinct covariate combinations
values is ”sufficiently large”. Specifically, FL show that c has to be
constrained by

c ≤
√

N + 2− 1

with N the number of distinct observed values of the covariate vector.

↪→ a single 0/1 covariate will identify only one component,

↪→ a mixture of two Bernoulli distributions is identifiable if the number of
unique combinations of the covariate vector is at least 7.
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A numerical investigation of identifiability

We simulate data from the model defined by{
log
(

P(Y =1|Xi ,Si )
1−P(Y =1|Xi ,Si )

)
= β1 + β2Xi2 + β3Zi2 + β4Zi3 + β5Zi4 if Si = 1

P(Y = 1|Xi ,Si ) = 0 if Si = 0

and

log

(
P(S = 1|Zi )

1− P(S = 1|Zi )

)
= θ1 + θ2Zi2 + θ3Zi3 + θ4Zi4,

where Xi2 ∼ N (0, 1), Zi2 ∼ N (1, 1), and Zi3 and Zi4 are indicator
variables built from a categorical variable with 3 categories.



A numerical investigation of identifiability (ctd)

Results for β = (−1.7,−2,−3.4, 5, .3) and θ = (.71, 1, 2,−3) (25% of immunes).

β̂n θ̂n

n β̂1,n β̂2,n β̂3,n β̂4,n β̂5,n θ̂1,n θ̂2,n θ̂3,n θ̂4,n

100 -1.709 -2.513 -3.843 5.540 0.301 0.824 0.976 2.558 -3.576
(1.819) (1.015) (1.667) (2.503) (3.132) (2.319) (3.073) (2.691) (2.941)
[1.348] [0.715] [1.204] [1.845] [2.296] [1.838] [2.118] [2.084] [2.376]

500 -1.695 -2.093 -3.286 4.954 0.301 0.761 0.988 2.316 -2.745
(0.999) (0.543) (1.063) (1.265) (1.848) (1.203) (1.566) (1.485) (2.489)
[0.741] [0.395] [0.760] [0.953] [1.481] [0.986] [1.060] [1.135] [1.830]

Note: (·): root mean square error. [·]: mean absolute error. The percentage of

infected among the susceptibles is 30%. All results are based on 1000 replicates.



A numerical investigation of identifiability (ctd)

Results for β = (−1.7,−2,−3.4, 5, .3) and θ = (−.3,−1, 2.1, 1) (50% of immunes).

β̂n θ̂n

n β̂1,n β̂2,n β̂3,n β̂4,n β̂5,n θ̂1,n θ̂2,n θ̂3,n θ̂4,n

100 -1.716 -2.641 -3.816 5.866 0.302 -0.279 -1.537 2.616 1.352
(2.455) (1.491) (1.866) (3.121) (3.133) (1.942) (1.909) (2.749) (3.155)
[1.830] [1.127] [1.467] [2.531] [2.296] [1.484] [1.334] [2.143] [2.469]

500 -1.714 -2.281 -3.764 5.295 0.301 -0.313 -1.317 2.364 1.211
(1.341) (0.794) (1.257) (1.929) (1.907) (1.071) (1.222) (1.689) (1.881)
[1.053] [0.597] [0.951] [1.554] [1.431] [0.858] [0.760] [1.263] [1.474]



A numerical investigation of identifiability (ctd)

Results for β = (−1.7,−2,−3.4, 5, .3) and θ = (.4,−1,−.6,−2) (75% of immunes).

β̂n θ̂n

n β̂1,n β̂2,n β̂3,n β̂4,n β̂5,n θ̂1,n θ̂2,n θ̂3,n θ̂4,n

100 -1.581 -2.792 -3.847 5.502 0.248 0.469 -1.571 -0.501 -1.846
(2.951) (2.412) (3.687) (5.192) (3.214) (2.256) (2.042) (2.356) (3.517)
[2.157] [1.897] [2.912] [4.434] [2.488] [1.803] [1.287] [1.896] [2.834]

500 -1.530 -2.435 -3.714 5.331 0.292 0.464 -1.323 -0.562 -1.901
(1.446) (1.466) (1.934) (3.221) (2.110) (1.335) (0.976) (1.678) (1.978)
[1.022] [1.142] [1.563] [2.659] [1.700] [1.076] [0.611] [1.307] [1.509]



Simulation study: the normal approximation

We simulate data from the model defined by{
log
(

P(Y =1|Xi ,Si )
1−P(Y =1|Xi ,Si )

)
= β1 + β2Xi2 if Si = 1

P(Y = 1|Xi ,Si ) = 0 if Si = 0

and

log

(
P(S = 1|Zi )

1− P(S = 1|Zi )

)
= θ1 + θ2Zi2,

where Xi2 ∼ N (0, 1) and Zi2 ∼ N (1, 1).

The sample size is taken: n = 100, 500, 1000, 1500 and the percentage of
immunes in the sample: 25%, 50%, and 75%.



Simulation results for β = (−.8, 1)

percentage of immunes in the sample
0% 25% 50% 75%

n β̂1,n β̂2,n β̂1,n β̂2,n β̂1,n β̂2,n β̂1,n β̂2,n
100 -0.834 1.064 -0.773 1.114 -0.787 1.137 -0.750 0.917

(0.258) (0.301) (0.583) (0.412) (0.825) (0.603) (0.921) (0.858)
[0.202] [0.232] [0.465] [0.324] [0.657] [0.440] [0.784] [0.568]

0.965 0.109 0.096 0.121
500 -0.807 1.012 -0.783 1.111 -0.788 1.129 -0.791 1.120

(0.107) (0.125) (0.320) (0.354) (0.428) (0.389) (0.707) (0.538)
[0.085] [0.099] [0.264] [0.227] [0.352] [0.270] [0.603] [0.407]

1 0.985 0.85 0.267
1000 -0.801 1.004 -0.794 1.058 -0.798 1.060 -0.797 1.108

(0.077) (0.085) (0.241) (0.202) (0.310) (0.247) (0.683) (0.482)
[0.062] [0.068] [ 0.201] [0.147] [0.253] [0.178] [0.569] [0.354]

1 1 1 0.567
1500 -0.805 1.003 -0.801 1.040 -0.799 1.040 -0.802 1.057

(0.061) (0.074) (0.210) (0.159) (0.277) (0.191) (0.600) (0.361)
[0.048] [0.059] [0.176] [0.119] [0.228] [0.141] [0.493] [0.276]

1 1 1 0.861

Note: (·): root mean square error. [·]: mean absolute error. For each % of immunes,

the % of infected among the susceptibles is 30%.



Histograms and Q-Q plots for β̂2,n (no immunes)
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n=1000 (0%)
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n=1500 (0%)
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Histograms and Q-Q plots for β̂2,n (25% of immunes)
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Histograms and Q-Q plots for β̂2,n (50% of immunes)
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Histograms and Q-Q plots for β̂2,n (75% of immunes)
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Simulation results for β = (−.8, 0)

percentage of immunes in the sample
0% 25% 50% 75%

n β̂1,n β̂2,n β̂1,n β̂2,n β̂1,n β̂2,n β̂1,n β̂2,n
100 -0.815 -0.001 -0.721 -0.007 -0.734 0.000 -0.746 -0.004

(0.224) (0.229) (0.465) (1.341) (0.800) (2.109) (1.966) (3.258)
[0.177] [0.179] [0.377] [0.762] [0.636] [1.111] [1.516] [1.715]

0.052 0.077 0.069 0.087
500 -0.801 -0.001 -0.748 0.007 -0.750 0.001 -0.775 -0.006

(0.097) (0.099) (0.280) (0.415) (0.520) (0.469) (1.209) (0.711)
[0.078] [0.080] [0.241] [0.231] [0.422] [0.241] [1.007] [0.363]

0.041 0.058 0.052 0.057
1000 -0.803 -0.001 -0.759 0.008 -0.763 0.005 -0.793 0.005

(0.067) (0.066) (0.221) (0.237) ( 0.367) (0.266) (1.154) (0.312)
[0.053] [0.053] [0.182] [0.137] [0.299] [0.140] [0.911] [0.175]

0.042 0.045 0.037 0.048
1500 -0.801 0.000 -0.782 0.009 -0.784 0.003 -0.783 0.009

(0.053) (0.054) (0.208) (0.168) (0.328) (0.212) (1.149) (0.258)
[0.042] [0.043] [0.178] [0.099] [0.267] [0.102] [0.901] [0.144]

0.051 0.048 0.027 0.039



1 Logistic regression: introduction and the problem of immunes

2 Estimation in logistic regression with immunes

3 Simulation results

4 Discussion



Discussion and perspectives

Logistic regression with a cure fraction can be viewed as a
zero-inflated Bernoulli regression problem. The proposed model
extends the ones previously investigated in the domain.

Confidence bands for the probability of infection are under
investigation.

Robustness to misspecification of the model for the cure fraction.

Further generalization: random-effects logistic regression for
clustered data (family, treatment).


