Master: INFORMATIQUE Parcours: VICO Visual Computing

UE: Multimedia Communication

video coding

vincent.ricordel@univ-nantes.fr

References and Text books

- Text book: M. Wien: High Efficiency Video Coding Coding Tools and Specification. Springer 2014 -> not available for free!
- Reference Paper: Sullivan, Gary J., et al. "Overview of the high efficiency video coding (HEVC) standard." Circuits and Systems for Video Technology, IEEE Transactions on22.12 (2012): 1649-1668 -> complete and detailed

• Need to read further? scholar.google.com is the best option

• Course material will be available in *ExtraDoc*

Contents

- Introduction
- Basic Concepts
- HEVC Overview
- Extension of HEVC
- HEVC Test Model (HM)

Introduction

Needs for *Efficient* Video Compression

- <u>Limited Bandwidth</u> Increasing demand on high quality video streaming (ex. Online movies, video conferencing, etc)
 - x.
- <u>Limited storage</u>
 Need to store a huge amount of data on a limited memory (Ex. smart phone)

Needs for HEVC

 Can videos be deployed with approximately the same bitrate when the size is doubled ? => HEVC instead of AVC

How to achieve 50% gain?

- Larger block sizes with flexible partitioning
- More intra prediction directions
- Better motion estimation (asymmetric partitioning + sub sample accuracy)

Better reconstruction filters (deblocking + in loop filtering)

HEVC vs Other MPEG Standards

Ohm, J., et al. "Comparison of the coding efficiency of video coding standards—including high efficiency video coding (HEVC). " *Circuits and Systems for Video Technology, IEEE Transactions on* 22.12 (2012): 1669-1684.

Basic Concepts

Must know!

• Image Representation (rgb, yuv) yuv420

Original

Must know

 Prediction (Intra, inter)
 Used to reduce redundancy in the spatial and temporal domain (resp.) => residual signal

 Image Transforms (DCT) further reduces the redundancy and arrange the coefficients for proper scanning (zigzag scanning)

Must know – 2D DCT

 DCT transform represents a signal with a set of coefficients representing the weight of the DCT basis functions

Low frequencies

 Low frequency components are dominant in natural images and videos

DCT Basis functions

Must know – Zigzag Scan

 Scanning the coefficients according to their importance:

low frequencies (upper left part) are more important than high frequencies (lower right)

Must know – Quantization

HEVC Overview

HEVC Reference Encoder

Sullivan, Gary J., et al. "Overview of the high efficiency video coding (HEVC) standard." *Circuits and Systems for Video Technology, IEEE Transactions on* 22.12 (2012): 1649-1668.

Processing Units and Blocks

- Unit vs Block
 - Units contains data of the 3 components (y,u and v)
 - Blocks contains data of 1 specific components (y or u or v)
- Ex:
 - 16x16 luma block (y only)
 - 8x8 unit (8x8 luma + 2* 4x4 chroma blocks)

Assuming yuv420

Coding Tree Unit (CTU)

- Analogous to macro blocks in AVC
- Split the input videos into equal units
- Contains 3 Coding Tree Blocks (CTB)
 - LxL luma CTB Assuming yuv420 format
 - 2 (L/2)x(L/2) chroma CTB
- L can be 64, 32 and 16

Split into CTUs

Coding Unit (CU)

- Each CTU starts with 1 CU
- CU can be split into 4 CUs in *Quad-Tree* manner
- CU contains Prediction Units (PUs) and Transform Units (TUs)

CU Splitting Depth

Maximum depth is 4

Z-Scan of CB

By following the leaves of the CTB

HEVC CTU quadtree partitioning

Fig. 2.8 Example of HEVC CTU quadtree partitioning.

Prediction Unit (PU)

 A basic unit in which the prediction is performed (intra / inter)

• Each CB can contain 1 or multiple PB according to the *mode splitting*

PU Mode Splitting

In intra prediction, only 2Nx2N and NxN is used!

HEVC PU prediction unit modes

Fig. 2.9 HEVC Prediction Unit (PU) modes.

Why is it useful ?

Nrx2N

Best prediction can be obtained if asymmetric partitioning is used!

Transform Unit (TU)

• A basic unit where the transform coding to the residual signal is performed

- The residual signal can be also further split => residual quad tree RQT
- DCT is applied for each TB, DST is applied to TBs of intra-predicted luma blocks of size 4x4

DCT : Discrete Cosine Transform DST : Discrete Sinus Transform

Putting everything Together

Slices

 Slices are sub-images that contains integer number of CTUs

• Independently decoded from the others in the same frame

• In HM, each slice is one frame!

HM: HEVC Test Model (the reference software for HEVC)

Slices

- Each slice is independently decodable
- Types of slices
 - 1. I Slice -> only intra prediction is allowed
 - 2. P Slice -> intra + inter (one reference) *
 - 3. B Slice -> intra + inter (two references) **
- In case of 1 slice / frame (ex. HM), we consider I-Frame, P-Frame and B-Frame
- * P stands for predicted frame
- ** B stands for bi-predicted frame

Prediction in HEVC

- Intra-Picture Prediction
 Directional
 - DC
 - Planar
- Inter-Picture Prediction

 Motion Compensation
 Advanced Motion Vector
 Prediction

Intra-Picture Prediction

 HEVC uses upper and left elements to generate the prediction signal

33 Prediction direction +
 DC prediction +
 Planar prediction

Intra-Picture Prediction

Sullivan, Gary J., et al. "Overview of the high efficiency video coding (HEVC) standard." *Circuits and Systems for Video Technology, IEEE Transactions on*22.12 (2012): 1649-1668.

DC and Planar Prediction

• <u>DC prediction</u> prediction signal equals to the average of all prediction elements

 <u>Planar Prediction</u> uses linear interpolation to generate the prediction signal

DC prediction

Inter-picture prediction

- Uni-Prediction ←
 - (P-Slice and B-Slice)
 - 1 reference picture

- Bi-Prediction
 - (B-Slice only)
 - 2 reference pictures

RPL: List of Reference Pictures for the current frame

Specifies how the sequence of frames are encoded (Inter/intra)

HEVC advance motion vector prediction

Fig. 2.12 Advanced Motion Vector Prediction (AMVP) candidates

Merge and Skip Mode

• When the motion information equals to the candidate's, HEVC encodes only a *merge* flag

• When the residual after motion compensated is neglected, HEVC encodes *skip* flag

Motion Compensation

A _{-1,-1}	A _{0,-1}	a _{0,-1}	b _{0,-1}	C _{0,-1}	A _{1,-1}		A _{2,-1}
A _{-1,0}	A _{0,0}	a _{0,0}	b _{0,0}	c _{0,0}	A _{1,0}		A _{2,0}
d _{-1,0}	d _{0,0}	e _{0,0}	f _{0,0}	g _{0,0}	d _{1,0}		d _{2,0}
h _{-1,0}	h _{0,0}	i _{0,0}	j _{o,o}	k _{0,0}	h _{1,0}		h _{2,0}
n _{-1,0}	n _{0,0}	p _{0,0}	q _{0,0}	r _{0,0}	n _{1,0}		n _{2,0}
A-1,1	A _{0,1}	a _{0,1}	b _{0,1}	c _{0,1}	A _{1,1}		A _{2,1}
A _{-1,2}	A _{0,2}	a _{0,2}	b _{0,2}	c _{0,2}	A _{1,2}		A _{2,2}

HEVC uses ¼ sample resolution for motion compensation

Sullivan, Gary J., et al. "Overview of the high efficiency video coding (HEVC) standard." *Circuits and Systems for Video Technology, IEEE Transactions on*22.12 (2012): 1649-1668.

HEVC fractional sample prediction

Fig. 2.11 Fractional sample positions for the interpolation of luma pixels.

Decoded Picture Buffer

- Contains a set of previously decoded pictures, to be used for inter prediction
- Pictures in RPS that are used for inter prediction of the current image are listed in *reference picture lists*

Ex: coding order != output order (From HM Doc.)

POC: Picture Order Count = Display order

Decoding order = Coding order

RPS: set (series) of decoded pictures in the buffer (by using the POCs) RPL: List of reference pictures (from the RPS) for a given frame

Ex: coding order != output order (From HM Doc.)

HEVC GOP prediction structure

TL: Temporal Layer

Fig. 2.15 GOP prediction structure for common HM configurations

Temporal Layers

- Frames can be arranged in layers, identified by a temporal id.
- Basic principle => Prediction from the lower layers

 Very useful in error concealment, as the errors in higher layers do not effect the lower layers.

Temporal Layers Example

Temporal Layers Example

Lost Frames Effected Frames The video can still be decoded and viewed!

Transform in HEVC

 As mentioned, HEVC uses DCT (and DST for specific cases)

3 coefficients scanning available in HEVC

Quantization in HEVC

- Quantization step-size (Delta) is controlled by the *quantization parameter* (QP)
- Increasing QP by 6, doubles
 Delta

Entropy Coding in HEVC

 HEVC uses the Context Adaptive Binary Arithmetic Coding (CABAC)

 CABAC encodes the bit stream with number of bits as small as the average information (entropy)

Special Modes in HEVC

• <u>PCM (pulse code modulation)</u>

Directly encode the samples, no transform, prediction & quantization.

Useful when the signal characteristics are unusual where hybrid coding fails

Special Modes in HEVC

• Lossless mode

if lossless compression is required, HEVC can switch off the lossy process (what is it?)

How to achieve compression without losing information?

Special Modes in HEVC

• Transform Skip

Transform can be skipped for a certain type of signals (eg. screen contents)

Can only be applied to 4x4 TB

Reconstruction Filter

• Deblocking filter (DBP)

Used to reduce blocking artifacts due to blocking process

• Sample Adaptive Offset filter (SAO)

Used to reconstruct lost edges based on neighboring information

Parallel Processing in HEVC

1. Slices: not in HM software

- 2. Tiles:
 - Groups of CTUs are arranged together such that no intra/inter prediction across tiles boundaries

Slice = 1 or more tiles

Parallel Processing in HEVC

Wave-Front Parallel Processing (WPP)

Example of Encoding Process

• Starting form GOP, lets pick one picture

This is B-Picture:

- Intra and inter prediction are possible
- Uni and Bi directional are possible

Ex. Cont.

Divide the image into equal CTUs

Ex. Cont.

• CB can be also split, the process restart again at new depth (depth++)